Publications by authors named "Fumikazu Okajima"

Purpose: Human bronchial smooth muscle cells (BSMCs) contribute to airway obstruction and hyperresponsiveness in patients with bronchial asthma. BSMCs also generate cytokines and matricellular proteins in response to extracellular acidification through the ovarian cancer G protein-coupled receptor 1 (OGR1). Cobalt (Co) and nickel (Ni) are occupational agents, which cause occupational asthma.

View Article and Find Full Text PDF

Prevalence of atopic dermatitis (AD), a chronic, pruritic, and relapsing inflammatory skin disorder, is growing. Because available therapeutics is limited, immune regulators from natural resources could be helpful for treating AD symptoms. The root of Bunge (Lamiaceae) has been studied for the treatment of inflammatory diseases, including dermatologic disorders in Korea.

View Article and Find Full Text PDF

Extracellular acidification in the brain has been observed in ischemia; however, the physiological and pathophysiological implications of the pH reduction remain largely unknown. Here, we analyzed the roles of proton-sensing G protein-coupled receptors, including T-cell death-associated gene 8 (TDAG8), ovarian cancer G protein-coupled receptor 1 (OGR1), and G protein-coupled receptor 4 (GPR4) in a mouse ischemia reperfusion model. Cerebral infarction and dysfunctional behavior with transient middle cerebral artery occlusion (tMCAO) and subsequent reperfusion were exacerbated by the deficiency of TDAG8, whereas no significant effect was observed with the deficiency of OGR1 or GPR4.

View Article and Find Full Text PDF

Ogerin is a positive allosteric modulator of human and mouse ovarian cancer G protein-coupled receptors (OGR1s). In the present study, we found that ogerin differentially enhances the activation of OGR1 in various animal species. Amino acid residues of OGR1 that are associated with ogerin are conserved among the species.

View Article and Find Full Text PDF

Ovarian cancer G protein-coupled receptor 1 (OGR1), also known as GPR68, is a proton-sensing G protein-coupled receptor (GPCR) coupling to G/phospholipase C/Ca signaling pathways. The specific histidine residues at the extracellular surface of OGR1 are suggested to be involved in the proton sensing. Later, some metal ions, including nickel ion (Ni), are also indicated to be OGR1 ligands.

View Article and Find Full Text PDF

Hormone-secreting pituitary adenomas show unregulated hormonal hypersecretion and cause hyperpituitarism. However, the mechanism of the unregulated hormone production and secretion has not yet been fully elucidated. Solid tumors show reduced extracellular pH, partly due to lactate secretion from anaerobic glycolysis.

View Article and Find Full Text PDF

Extracellular acidification regulates endocrine cell functions. Ovarian cancer G protein-coupled receptor 1 (OGR1), also known as GPR68, is a proton-sensing G protein-coupled receptor and is activated by extracellular acidification, resulting in the activation of multiple intracellular signaling pathways. In the present study, we found that OGR1 was expressed in some gonadotropic cells in rat anterior pituitary and in LβΤ2 cells, which are used as a model of gonadotropic cells.

View Article and Find Full Text PDF

Mammalian T cell death-associated gene 8 (TDAG8)s are activated by extracellular protons. In the present study, we examined whether the TDAG8 homologs of other species are activated by protons as they are in mammals. We found that Xenopus TDAG8 also stimulated cAMP response element (CRE)-driven promoter activities reflecting the activation of Gs/cAMP signaling pathways when they are stimulated by protons.

View Article and Find Full Text PDF

Background: Human airway smooth muscle cells (ASMCs) contribute to bronchial contraction and airway hyperresponsiveness in patients with bronchial asthma. They also generate cytokines, chemokines, and matricellular proteins. Ovarian cancer G protein-coupled receptor 1 (OGR1) senses extracellular protons and mediates the production of interleukin-6 (IL-6) and connective tissue growth factor (CTGF) in ASMCs.

View Article and Find Full Text PDF

Human, mouse, and zebrafish ovarian cancer G protein-coupled receptors (OGR1s) are activated by both metals and extracellular protons. In the present study, we examined whether pig, rat, chicken, and Xenopus OGR1 homologs could sense and be activated by protons and metals. We found that all homologs stimulated serum response element (SRE)-driven promoter activities when they are stimulated by protons.

View Article and Find Full Text PDF

The original version of this Article contained an error in the spelling of the author Nobuhiko Ohno, which was incorrectly given as Noubuhiko Ohno. This has now been corrected in both the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Myocardial infarction (MI) is an ischaemic heart condition caused by the occlusion of coronary arteries. Following MI, lactic acid from anaerobic glycolysis increases and infiltrating immune cells produce severe inflammation, which leads to acidosis in the ischaemic heart. However, the physiological implication of this pH reduction remains largely unknown.

View Article and Find Full Text PDF

Astrocytes become reactive following various brain insults; however, the functions of reactive astrocytes are poorly understood. Here, we show that reactive astrocytes function as phagocytes after transient ischemic injury and appear in a limited spatiotemporal pattern. Following transient brain ischemia, phagocytic astrocytes are observed within the ischemic penumbra region during the later stage of ischemia.

View Article and Find Full Text PDF

Objective: Obesity is associated with an increased risk of diabetes mellitus, hypertension, and renal dysfunction. Angiotensin 1-7 and alamandine are heptameric renin angiotensin system peptide hormones. Further, alamandine levels increase with renal dysfunction.

View Article and Find Full Text PDF

A G protein-coupled receptor (GPCR) named free fatty acid receptor 4 (FFA4, also known as GPR120) was found to act as a GPCR for ω-3 polyunsaturated fatty acids. Its expression has been reported in lung epithelial club cells. We investigated whether supplementation of the ω-3 fatty acids benefits lung health.

View Article and Find Full Text PDF

Mammalian ovarian G-protein-coupled receptor 1 (OGR1) is activated by some metals in addition to extracellular protons and coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebrafish OGR1, zebrafish GPR4, and human GPR4 (zOGR1, zGPR4, and hGPR4, respectively) could sense the metals and activate the intracellular signaling pathways. On one hand, we found that only manganese and cobalt of the tested metals stimulated SRE-promoter activities in zOGR1-overexpressed HEK293T cells.

View Article and Find Full Text PDF

Amelogenesis is the process of dental enamel formation, leading to the deposition of the hardest tissue in the human body. This process requires the intricate regulation of ion transport and controlled changes to the pH of the developing enamel matrix. The means by which the enamel organ regulates pH during amelogenesis is largely unknown.

View Article and Find Full Text PDF

Background: Lipoprotein lipase (LPL) is a multifunctional protein and a key enzyme involved in the regulation of lipoprotein metabolism. We determined the lipoproteins to which LPL is bound in the pre-heparin and post-heparin plasma.

Methods: Tetrahydrolipstatin (THL), a potent inhibitor of serine lipases, was used to block the lipolytic activity of LPL, thereby preventing changes in the plasma lipoproteins due to ex vivo lipolysis.

View Article and Find Full Text PDF

GPR4, a pH-sensing G protein-coupled receptor, is highly expressed in endothelial cells and may be activated in myocardial infarction due the decreased tissue pH. We are interested in GPR4 antagonists as potential effective pharmacologic tools and/or drug leads for the treatment of myocardial infarction. We investigated the structure-activity relationship of a known GPR4 antagonist 1 as a lead compound to identify 3b as the first potent and selective GPR4 antagonist, whose effectiveness was demonstrated in a mouse myocardial infarction model.

View Article and Find Full Text PDF
Article Synopsis
  • Acute lung injury involves neutrophils infiltrating the lungs, leading to impaired lung function, particularly in response to lipopolysaccharide (LPS) exposure.
  • The study found that LPS treatment increases the expression of TDAG8 in the lungs and resident macrophages, which in turn influences neutrophil accumulation and inflammation.
  • In mice lacking TDAG8, there was increased neutrophil accumulation and lung damage, indicating that TDAG8 acts as a negative regulator of lung inflammation by inhibiting the production of certain inflammatory chemokines.
View Article and Find Full Text PDF
Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) is a serious lung disease characterized by inflammation and fibrosis with few effective treatments available.
  • The study investigates the potential of 17(R)-resolvin D1 (17(R)-RvD1), a lipid mediator that promotes inflammation resolution, to improve IPF outcomes by reducing inflammation and fibrosis in a mouse model.
  • Results showed that 17(R)-RvD1 decreased key inflammatory markers and collagen levels while improving lung function, indicating its possible therapeutic benefits for treating IPF without compromising the immune response.
View Article and Find Full Text PDF

Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the Gs-protein/cAMP/CRE, G12/13-protein/Rho/SRE, and Gq-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways.

View Article and Find Full Text PDF

Metabolic syndrome is characterized by visceral adiposity, insulin resistance, high triglyceride (TG)- and low high-density lipoprotein cholesterol-levels, hypertension, and diabetes-all of which often cause cardiovascular and cerebrovascular diseases. It remains unclear, however, why visceral adiposity but not subcutaneous adiposity causes insulin resistance and other pathological situations. Lipoprotein lipase (LPL) catalyzes hydrolysis of TG in plasma lipoproteins.

View Article and Find Full Text PDF

Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses.

View Article and Find Full Text PDF
Article Synopsis
  • GPR4 is a receptor that senses pH levels and is linked to various signaling pathways; recent studies have identified imidazopyridine compounds as modulators that can affect GPR4's function.
  • Inhibition of SRE-driven transcriptional activity related to acidic pH was observed in cells expressing GPR4, but only when treated with these imidazopyridine compounds.
  • Compared to psychosine, which inhibits proton-sensing GPCRs by targeting specific histidine residues, imidazopyridine compounds demonstrated a unique mode of action on GPR4, showing potential as tools for studying its biological functions.
View Article and Find Full Text PDF