The intensity of Raman scattering from dye molecules strongly coupled with localized surface plasmons of metal nanostructures was controlled by the electrochemical potential. Through in situ electrochemical extinction and surface-enhanced Raman scattering measurements, it is found that the redox state of the molecules affects the coupling strength, leading to the change in the intensity of the Raman scattering. Analysis of the Raman spectrum provides information on the molecules in strong coupling states showing effective enhancement of Raman scattering.
View Article and Find Full Text PDFWe demonstrate that a poly(N-isopropylacrylamide) (PNIPAM) microassembly, formed by plasmonic optical trapping, can provide the platform for a highly sensitive detection technique for fluorescent and nonfluorescent organic molecules dissolved in aqueous solution. PNIPAM microassemblies can be easily formed by a combination with a photothermal effect and an enhanced optical force. These physical phenomena were obtained through resonant excitation of localized surface plasmon (LSP).
View Article and Find Full Text PDFPolarized Raman scattering measurement was carried out using a hybridized system of Ag nanodimer structures and organic dye molecules. Tuning of the localized surface plasmon resonance energy leads to modulation of the hybridized polariton energy. The anticrossing behavior of the polariton energy implies a strong coupling regime with maximum Rabi splitting energy of 0.
View Article and Find Full Text PDFThe use of localized surface plasmons (LSPs) for highly sensitive biosensors has already been investigated, and they are currently being applied for the optical manipulation of small nanoparticles. The objective of this work was the optical trapping of λ-DNA on a metallic nanostructure with femtosecond-pulsed (fs) laser irradiation. Continuous-wave laser irradiation, which is generally used for plasmon excitation, not only increased the electromagnetic field intensity but also generated heat around the nanostructure, causing the DNA to become permanently fixed on the plasmonic substrate.
View Article and Find Full Text PDFThe in situ observation of geometrical and electronic structural dynamics of a single molecule junction is critically important in order to further progress in molecular electronics. Observations of single molecular junctions are difficult, however, because of sensitivity limits. Here, we report surface-enhanced Raman scattering (SERS) of a single 4,4'-bipyridine molecule under conditions of in situ current flow in a nanogap, by using nano-fabricated, mechanically controllable break junction (MCBJ) electrodes.
View Article and Find Full Text PDFPolarized SERS was measured at the substrate with an Ag nano-dimer array immersed in 4,4'-bipyridine solution. The orientation of the molecule at the gap of the dimer changed the polarization of the scattering photons.
View Article and Find Full Text PDF