Hippocampal place cells exhibit spatially modulated firing, or place fields, which can remap to encode changes in the environment or other variables. Unique among hippocampal subregions, the dentate gyrus (DG) has two excitatory populations of place cells, granule cells and mossy cells, which are among the least and most active spatially modulated cells in the hippocampus, respectively. Previous studies of remapping in the DG have drawn different conclusions about whether granule cells exhibit global remapping and contribute to the encoding of context specificity.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Although previous researches have investigated the relationship between learning and memory function in the hippocampus and continuously produced newborn neurons, the detailed role of newly generated neurons remains unclear. Here, we investigated the correlation between immature neurons and the electrical activity of the hippocampus at the network level in vitro. We showed that administrating the Notch response inhibitor DAPT to the hippocampal network enhances the neuronal differentiation of newborn cells and decreases the ratio of immature neurons in hippocampal culture.
View Article and Find Full Text PDFNeural stem cells (NSCs) are continuously produced throughout life in the hippocampus, which is a vital structure for learning and memory. NSCs in the brain incorporate into the functional hippocampal circuits and contribute to processing information. However, little is known about the mechanisms of NSCs' activity in a pre-existing neuronal network.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Adult neurogenesis in the hippocampus is known to enhance pattern separation. However, the effect of adult neurogenesis on spatial pattern separation at the cellular assembly level is unclear. In order to elucidate how newborn and immature neurons change learning of spatial pattern of mature neuronal network, we evaluated evoked response to two types of spatial patterns of the cultured hippocampal network with or without added neural stem cells by using electrical stimulation on microelectrode array.
View Article and Find Full Text PDFNeuroengineering methods can be effectively used in the design of new approaches to treat central nervous system and brain injury caused by neurotrauma, ischemia, or neurodegenerative disorders. During the last decade, significant results were achieved in the field of implant (scaffold) development using various biocompatible and biodegradable materials carrying neuronal cells for implantation into the injury site of the brain to repair its function. Neurons derived from animal or human induced pluripotent stem (iPS) cells are expected to be an ideal cell source, and induction methods for specific cell types have been actively studied to improve efficacy and specificity.
View Article and Find Full Text PDF