For a better understanding of metal-ligand interaction and its function in cells, we developed an easy, sensitive, and high-throughput method to quantify ligand-metal(loid) binding affinity under physiological conditions by combining ligand-attached affinity beads and inductively coupled plasma-optical emission spectrometry (ICP-OES). Glutathione (GSH) and two phytochelatins (PC2 and PC3, small peptides with different numbers of free thiols) were employed as model ligands and attached to hydrophilic beads. The principle of the assay resembles that of affinity purification of proteins in biochemistry: metals binding to the ligand on the beads and the rest in the buffer are separated by a spin column and quantified by ICP-OES.
View Article and Find Full Text PDFAn organomercurial phenylmercury activates AtPCS1, an enzyme known for detoxification of inorganic metal(loid) ions in Arabidopsis and the induced metal-chelating peptides phytochelatins are essential for detoxification of phenylmercury. Small thiol-rich peptides phytochelatins (PCs) and their synthases (PCSs) are crucial for plants to mitigate the stress derived from various metal(loid) ions in their inorganic form including inorganic mercury [Hg(II)]. However, the possible roles of the PC/PCS system in organic mercury detoxification in plants remain elusive.
View Article and Find Full Text PDF