Publications by authors named "Fumihiro Torigoe"

We cloned a cDNA encoding a novel CYP2C enzyme, called P450 M-2C, from a marmoset liver. The deduced amino acid sequence showed high identities to those of human CYP2C8 (87%), CYP2C9 (78%) and CYP2C19 (77%). The P450 M-2C enzyme expressed in yeast cells catalyzed p-methylhydroxylation of only tolbutamide among four substrates tested, paclitaxel as a CYP2C8 substrate, diclofenac and tolbutamide as CYP2C9 substrates and S-mephenytoin as a CYP2C19 substrate.

View Article and Find Full Text PDF

The roles of Phe-120 and Glu-222 in the oxidation of chiral substrates bunitrolol (BTL) and bufuralol (BF) by CYP2D6 are discussed. Wild-type CYP2D6 (CYP2D6-WT) oxidized BTL to 4-hydroxybunitrolol (4-OH-BTL) with substrate enantioselectivity of (R)-(+)-BTL > (S)-(-)-BTL. The same enzyme converted BF into 1''-hydroxybufuralol with substrate enantioselectivity of (R)-BF >> (S)-BF and metabolite diastereoselectivity of (1''R)-OH < (1''S)-OH.

View Article and Find Full Text PDF

The functional roles of phenylalanine at position 120 in drug oxidation by cytochrome P450 2D6 (CYP2D6) were examined using a yeast cell expression system and bufuralol (BF) enantiomers as a chiral substrate. Two mutated cDNAs, one encoding a CYP2D6 mutant having alanine instead of Phe-120 (F120A) and another encoding a mutant having alanine instead of Glu-222 (E222A), were prepared by site-directed mutagenesis and transformed into yeast cells via pGYRI vectors. The enantiomeric BF 1''-hydroxylase activities of the mutants were compared with those of the wild type.

View Article and Find Full Text PDF