Experimental techniques for patient-derived cancer stem-cell organoids/spheroids can be powerful diagnostic tools for personalized chemotherapy. However, establishing their cultures from gastric cancer remains challenging due to low culture efficiency and cumbersome methods. To propagate gastric cancer cells as highly proliferative stem-cell spheroids in vitro, we initially used a similar method to that for colorectal cancer stem cells, which, unfortunately, resulted in a low success rate (25%, 18 of 71 cases).
View Article and Find Full Text PDFSome colorectal cancer patients harboring (fibroblast growth factor receptor) genetic alterations, such as copy number gain, mutation, and/or mRNA overexpression, were selected for enrollment in several recent clinical trials of FGFR inhibitor, because these genetic alterations were preclinically reported to be associated with FGFR inhibitor sensitivity as well as poor prognosis, invasiveness, and/or metastatic potential. However, few enrolled patients were responsive to FGFR inhibitors. Thus, practical strategies are eagerly awaited that can stratify patients for the subset that potentially responds to FGFR inhibitor chemotherapy.
View Article and Find Full Text PDFMismatch repair (MMR)-deficient or microsatellite instability (MSI) colorectal cancer includes two subtypes; Lynch syndrome and sporadic MSI cancer, both of which generate multiple neoantigens due to unrepaired mutations. Although such patients respond very well to immune checkpoint therapy, their diagnosis can be confused by low quality DNA samples owing to formalin fixation and/or low cancer cell content. Here we prepared high-quality DNA samples from -cultured cancer spheroids that consisted of the pure cell population.
View Article and Find Full Text PDFRecent advances allowed culturing and examination of patient-derived colorectal cancer (PD-CRC) cells as organoids or spheroids. To be applied to practical personalized medicine, however, current methods still need to be strengthened for higher efficiency. Here we report an improved method to propagate PD-CRC tumor initiating cells (TICs) in spheroid culture.
View Article and Find Full Text PDFA major cause of cancer death is its metastasis to the vital organs. Few effective therapies are available for metastatic castration-resistant prostate cancer (PCa), and progressive metastatic lesions such as lymph nodes and bones cause mortality. We recently identified AES as a metastasis suppressor for colon cancer.
View Article and Find Full Text PDFWe recently found that the product of the AES gene functions as a metastasis suppressor of colorectal cancer (CRC) in both humans and mice. Expression of amino-terminal enhancer of split (AES) protein is significantly decreased in liver metastatic lesions compared with primary colon tumors. To investigate its downregulation mechanism in metastases, we searched for transcriptional regulators of AES in human CRC and found that its expression is reduced mainly by transcriptional dysregulation and, in some cases, by additional haploidization of its coding gene.
View Article and Find Full Text PDFAmino-terminal enhancer of split (Aes) is a member of Groucho/Transducin-like enhancer (TLE) family. Aes is a recently found metastasis suppressor of colorectal cancer (CRC) that inhibits Notch signalling, and forms nuclear foci together with TLE1. Although some Notch-associated proteins are known to form subnuclear bodies, little is known regarding the dynamics or functions of these structures.
View Article and Find Full Text PDFThe expression level of inhibitor of DNA binding 2 (Id2) is increased in colorectal carcinomas and is positively correlated with poor prognosis. However, the functional significance of Id2 in intestinal tumorigenesis has not been fully defined using genetic approaches. Here, we show that Id2 promotes ileal tumor initiation in Apc-deficient mice.
View Article and Find Full Text PDFUnlabelled: We have recently identified a metastasis suppressor gene for colorectal cancer: AES/Aes, which encodes an endogenous inhibitor of NOTCH signaling. When Aes is knocked out in the adenomatous epithelium of intestinal polyposis mice, their tumors become malignant, showing marked submucosal invasion and intravasation. Here, we show that one of the genes induced by NOTCH signaling in colorectal cancer is DAB1/Dab1.
View Article and Find Full Text PDFBackground & Aims: Loss of the tumor suppressor SMAD4 correlates with progression of colorectal cancer (CRC). In mice, colon tumors that express CCL9 recruit CCR1(+) myeloid cells, which facilitate tumor invasion and metastasis by secreting matrix metalloproteinase 9.
Methods: We used human CRC cell lines to investigate the ability of SMAD4 to regulate expression of CCL15, a human ortholog of mouse CCL9.
Metastasis is responsible for most cancer deaths. Here, we show that Aes (or Grg5) gene functions as an endogenous metastasis suppressor. Expression of Aes was decreased in liver metastases compared with primary colon tumors in both mice and humans.
View Article and Find Full Text PDFCaudal-related homeoprotein CDX2 is expressed in intestinal epithelial cells, in which it is essential for their development and differentiation. A tumor suppressor function is suggested by evidence that CDX2 levels are decreased in human colon cancer specimens and that an inactivating mutation of Cdx2 in Apc(Δ716) mice markedly increases the incidence of colonic polyps. In this study, we investigated roles for transcriptional and nontranscriptional functions of CDX2 in suppression of colonic tumorigenesis.
View Article and Find Full Text PDFBackground & Aims: Caudal-related homeodomain transcription factors CDX1 and CDX2 regulate gut development and differentiation of intestinal epithelial cells; they are candidate tumor suppressors of colorectal carcinomas. Because the functions of CDX1 and CDX2 in the colonic epithelium are not fully understood, we sought to identify genes that they target.
Methods: We conducted a chromatin immunoprecipitation (ChIP) screen to identify genes that bind the CDX transcription factors.