Adult myogenic cell lines are useful to study muscle development, repair and regeneration. In newts, which are known for their high regenerative capacity, myogenic cell lines have not been established in species other than the Eastern newt Notophthalmus viridescens. In this study, we established another myogenic cell line, named CpM01, from the skeletal muscle of the forearm of the adult Japanese fire-bellied newt Cynops pyrrhogaster.
View Article and Find Full Text PDFBackground: Newts, a type of urodele amphibian, offer remarkable insights into regenerative medicine due to their extraordinary tissue regeneration capabilities-a challenging feat in humans. During limb regeneration of adult newts, fascinating cellular and molecular processes are revealed, including scarless healing, de-differentiation of mature cells, and regeneration of limbs and digits. Sonic hedgehog (Shh), crucial for vertebrate limb development, is regulated by the zone of polarizing activity regulatory sequence (ZRS) in the limb bud zone of polarizing activity (ZPA).
View Article and Find Full Text PDFIn adult newts, when a limb is amputated, a mesenchymal cell mass called the blastema is formed on the stump, where blood vessels filled with premature erythrocytes, named polychromatic normoblasts (PcNobs), elongate. We previously demonstrated that PcNobs in the blastema express an orphan gene, , and that they secrete growth factors such as BMP2 and TGFβ1 into the surrounding tissues. However, the relationship between Newtic1 expression and growth factor secretion was not clear since was thought to encode a membrane protein.
View Article and Find Full Text PDFNewts can regenerate their limbs throughout their life-span. Focusing on muscle, certain species of newts such as Cynops pyrrhogaster dedifferentiate muscle fibers in the limb stump and mobilize them for muscle creation in the regenerating limb, as they grow beyond metamorphosis. However, which developmental process is essential for muscle dedifferentiation, metamorphosis or body growth, is unknown.
View Article and Find Full Text PDFIn surgical and cosmetic studies, scarless regeneration is an ideal method to heal skin wounds. To study the technologies that enable scarless skin wound healing in medicine, animal models are useful. However, four-limbed vertebrates, including humans, generally lose their competency of scarless regeneration as they transit to their terrestrial life-stages through metamorphosis, hatching or birth.
View Article and Find Full Text PDFNewts are unique salamanders that can regenerate their limbs as postmetamorphic adults. In order to regenerate human limbs as newts do, it is necessary to determine whether the cells homologous to those contributing to the limb regeneration of adult newts also exist in humans. Previous skin manipulation studies in larval amphibians have suggested that stump skin plays a pivotal role in the axial patterning of regenerating limbs.
View Article and Find Full Text PDFThe newt, a group of urodele amphibians, has outstanding ability to repeatedly regenerate various body parts, even in the terrestrial life-stage. In this animal, when the limb is amputated, a cell mass named the blastema appears on the stump and eventually gives rise to a new functional limb. Erythrocytes (red blood cells) in most non-mammalian vertebrates, including the newt, preserve their nucleus throughout their life-span, although physiological roles of such nucleated erythrocytes, other than oxygen delivery, are not known.
View Article and Find Full Text PDFThe newt is an amazing four-limbed vertebrate that can regenerate various body parts including the retina. In this animal, when the neural retina (NR) is removed from the eye by surgery (retinectomy), both the NR and the retinal pigment epithelium (RPE) eventually regenerate through the process of reprogramming and proliferation of RPE cells. Thus far, we have pursued the onset mechanism of adult newt retinal regeneration.
View Article and Find Full Text PDFThe newt, a urodele amphibian, has an outstanding ability- even as an adult -to regenerate a functional retina through reprogramming and proliferation of the retinal pigment epithelium (RPE) cells, even though the neural retina is completely removed from the eye by surgery. It remains unknown how the newt invented such a superior mechanism. Here we show that disability of RPE cells to regenerate the retina brings about a symptom of proliferative vitreoretinopathy (PVR), even in the newt.
View Article and Find Full Text PDFThe newt, a urodele amphibian, is able to repeatedly regenerate its limbs throughout its lifespan, whereas other amphibians deteriorate or lose their ability to regenerate limbs after metamorphosis. It remains to be determined whether such an exceptional ability of the newt is either attributed to a strategy, which controls regeneration in larvae, or on a novel one invented by the newt after metamorphosis. Here we report that the newt switches the cellular mechanism for limb regeneration from a stem/progenitor-based mechanism (larval mode) to a dedifferentiation-based one (adult mode) as it transits beyond metamorphosis.
View Article and Find Full Text PDFThe adult newt has the remarkable ability to regenerate a functional retina from retinal pigment epithelium (RPE) cells, even when the neural retina (NR) is completely lost from the eye. In this system, RPE cells are reprogrammed into a unique state of multipotent cells, named RPESCs, in an early phase of retinal regeneration. However, the signals that trigger reprogramming remain unknown.
View Article and Find Full Text PDFThe reprogramming of retinal pigment epithelium (RPE) cells in the adult newt immediately after retinal injury is an area of active research for the study of retinal disorders and regeneration. We demonstrate here that unlike embryonic/larval retinal regeneration, adult newt RPE cells are not directly reprogrammed into retinal stem/progenitor cells; instead, they are programmed into a unique state of multipotency that is similar to the early optic vesicle (embryo) but preserves certain adult characteristics. These cells then differentiate into two populations from which the prospective-neural retina and -RPE layers are formed with the correct polarity.
View Article and Find Full Text PDFThe adult female of the freshwater ostracod Cyprinotus uenoi Brehm, 1936 (Podocopida: Cypridoidea) has a pair of long, sac-like ovaries separately lying in the posterior part of the left and the right carapace valves. Oogonia and very early previtellogenic oocytes are located in the terminal germarium of each ovary. In the germarium, the oogonia occur in the most terminal region, and the very early previtellogenic oocytes are located in the remainder, arranged in order of size, the larger ones nearer the ovarian lumen.
View Article and Find Full Text PDFAdult newts can regenerate their entire retina through transdifferentiation of the retinal pigment epithelium (RPE). The objective of this study was to redescribe the retina regeneration process by means of modern biological techniques. We report two different antibodies (RPE-No.
View Article and Find Full Text PDF