Proc Natl Acad Sci U S A
December 2005
One of the most powerful techniques for attributing functions to genes in uni- and multicellular organisms is comprehensive analysis of mutant traits. In this study, systematic and quantitative analyses of mutant traits are achieved in the budding yeast Saccharomyces cerevisiae by investigating morphological phenotypes. Analysis of fluorescent microscopic images of triple-stained cells makes it possible to treat morphological variations as quantitative traits.
View Article and Find Full Text PDFFor comprehensive understanding of precise morphological changes resulting from loss-of-function mutagenesis, a large collection of 1,899,247 cell images was assembled from 91,71 micrographs of 4782 budding yeast disruptants of non-lethal genes. All the cell images were processed computationally to measure approximately 500 morphological parameters in individual mutants. We have recently made this morphological quantitative data available to the public through the Saccharomyces cerevisiae Morphological Database (SCMD).
View Article and Find Full Text PDFJ Bioinform Comput Biol
January 2004
Every living organism has its own species-specific morphology. Despite the relatively simple ellipsoidal shape of budding yeast cells, the global regulation of yeast morphology remains unclear. In the past, each mutated gene from many mutants with abnormal morphology had to be classified manually.
View Article and Find Full Text PDFTo study the global regulation of cell morphology, a number of groups have recently reported genome-wide screening data for yeast mutants with abnormal morphology. Despite the relatively simple ellipsoidal shape of yeast cells, in the past, cell morphology researchers have processed information on cells manually. These time-consuming, entirely subjective tasks motivated us to develop image-processing software that automatically extracts yeast cells from micrographs and processes them to measure key morphological characteristics such as cell size, roundness, bud neck position angle, nuclear DNA localization and actin localization.
View Article and Find Full Text PDF