Vitronectin (VN), which is an extracellular matrix protein, is known to be involved in the proliferation and differentiation of primary cultured cerebellar granule cell precursors (CGCPs); however, the effect of VN is not fully understood. In this study, we analyzed the effects of VN loss on the proliferation and differentiation of CGCPs in VN knockout (VNKO) mice in vivo. First, immunohistochemistry showed that VN was distributed in the region from the inner external granule layer (iEGL) through the internal granule layer (IGL) in wild-type (WT) mice.
View Article and Find Full Text PDFThis review addresses our current understanding of the regulatory mechanism by which N-cadherin, a classical cadherin, affects neural progenitor cells (NPCs) during development. N-cadherin is responsible for the integrity of adherens junctions (AJs), which develop in the sub-apical region of NPCs in the neural tube and brain cortex. The apical domain, which contains the sub-apical region, is involved in the switching from symmetric proliferative division to asymmetric neurogenic division of NPCs.
View Article and Find Full Text PDFAdherens junction (AJ) between dopaminergic (DA) progenitors maintains the structure of ventricular zone and polarity of radial glia cells in the ventral midbrain (vMB) during embryonic development. However, it is unclear how loss of N-cadherin might influence the integrity of the AJ and the process of DA neurogenesis. Here, we used conditional gene targeting approaches to perform the region-specific removal of N-cadherin in the neurogenic niche of DA neurons in the vMB.
View Article and Find Full Text PDF