Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules and passivation strategies. However, poor wettability and agglomeration of self-assembled molecules cause interfacial losses, impeding further improvement in the power conversion efficiency and stability.
View Article and Find Full Text PDFIn recent years, perovskite solar cells (PSCs) have attracted significant attention due to their excellent photoelectric properties. However, several key performance parameters of these devices still fall short of their theoretical limits. Among these parameters, the regulation of open-circuit voltage (V) has been a focal point of intensive research efforts, playing a pivotal role in advancing the efficiency of PSCs.
View Article and Find Full Text PDFEffective p-type doping is essential to enhance hole transport and balance electron-hole injection in quantum dot light-emitting diodes (QLEDs). Here, an oligothiophene material is adopted as a p-type dopant in the hole-transport layer, considering its cruciform cross-center structure, precise molecular weight, and high purity. Compared with the dopant-free counterpart, hole transport capability at the optimal doping level exhibits a significant improvement, producing a boosted external quantum efficiency (EQE) and luminance up to 20.
View Article and Find Full Text PDF