This study developed an innovative biosensor strategy for the sensitive and selective detection of canine mammary tumor biomarkers, cancer antigen 15-3 (CA 15-3) and mucin 1 (MUC-1), integrating green silver nanoparticles (GAgNPs) with machine learning (ML) algorithms to achieve high diagnostic accuracy and potential for noninvasive early detection. The GAgNPs-enhanced electrochemical biosensor demonstrated selective detection of CA 15-3 in serum and MUC-1 in tissue homogenates, with limits of detection (LODs) of 0.07 and 0.
View Article and Find Full Text PDFBackground: Fluralaner is a novel drug belonging to the isoxazoline class that acts on external parasites of domestic animals. It is used systemically via drinking water, especially against red poultry mite in layer chickens. Fluralaner is frequently used in layers infected with .
View Article and Find Full Text PDFCurrently, researchers are focusing on the development of nano-additive preservatives during the worldwide COVID-19 pandemic. This research aimed to constitute a small sized preservative nano-formulation which emerges from the biopolymer carboxymethyl cellulose (a green stabilizing agent) and hydromagnesite stromatolite (a fossilized natural additive). In this study, we investigated the optimization of the experimental design of carboxymethyl cellulose/hydromagnesite stromatolite (CMC/HS) bio-nanocomposites using a green and one-step sonochemical method at room temperature.
View Article and Find Full Text PDFIntroduction: Masitinib mesylate, a selective tyrosine kinase inhibitor of the c-KIT receptor, is used for the treatment of mast cell tumours in dogs. Masitinib has previously been investigated in various cancers; however, its potential anticancer effect in canine mammary tumours (CMTs) is unknown. In the present paper, we investigated the antiproliferative effect of masitinib in CMT cells and its possible mechanisms of action.
View Article and Find Full Text PDFNanotechnology-based drugs show superiority over conventional medicines because of increased bioavailability, lower accumulation in non-target tissues, and improved therapeutic index with increased accumulation at target sites. However, it is important to be aware of possible problems related to the toxicity of these products, which have therapeutically superior properties. Accordingly, the present study was designed to investigate the safety profile of amoxicillin nanoparticles (AmxNPs) that we developed to increase the oral bioavailability of amoxicillin (Amx) in poultry.
View Article and Find Full Text PDFRecently, multi-target directed ligands have been of research interest for multifactorial disorders such as Alzheimer's disease (AD). Since H receptors (H Rs) and cholinesterases are involved in pathophysiology of AD, identification of dual-acting compounds capable of improving cholinergic neurotransmission is of importance in AD pharmacotherapy. In the present study, H R antagonistic activity combined with anticholinesterase properties of two previously computationally identified lead compounds, that is, compound 3 (6-chloro-N-methyl-N-[3-(4-methylpiperazin-1-yl)propyl]-1H-indole-2-carboxamide) and compound 4 (7-chloro-N-[(1-methylpiperidin-3-yl)methyl]-1,2,3,4-tetrahydroisoquinoline-2-carboxamide), was tested.
View Article and Find Full Text PDFBoiss. subsp. (Borbas) (TS) is a commonly used plant in the treatment of various complaints, including skin wounds in Turkish folk medicine.
View Article and Find Full Text PDFWe aimed to test the adsorption of the methylene blue (MB) on HSEPCGUM as a dye and also to test the obtained ternary biocomposite substance (HSEPCGUM-MB) on wound healing. Hollow silica spheres (HSS) are used in the pharmaceutical and biochemical field, because of low toxic, highly biocompatible and mechanically stable by large surface areas. HSS was obtained by mechanochemistry method.
View Article and Find Full Text PDFCurrently, there is a growing interest in combining anticancer drugs with the aim to improve outcome in patients suffering from tumours and reduce the long-term toxicity associated with the current standard of treatment. In this study, we evaluated the possible role of deracoxib against the toxicity of doxorubicin on normal canine mammary epithelial cells. The effect of deracoxib and doxorubicin combination on cell viability was determined by MTT assay.
View Article and Find Full Text PDFRON (Recepteur d'Origine Nantais) tyrosine kinase receptor is a promising target for therapeutic intervention in cancer therapy. The aim of this work was identification of RON-binding peptides using phage display and computational modeling their mode of binding. A 12-mer peptide phage library was utilized to perform biopanning against RON.
View Article and Find Full Text PDFImplication of protein-protein interactions (PPIs) in development of many diseases such as cancer makes them attractive for therapeutic intervention and rational drug design. RON (Recepteur d'Origine Nantais) tyrosine kinase receptor has gained considerable attention as promising target in cancer therapy. The activation of RON via its ligand, macrophage stimulation protein (MSP) is the most common mechanism of activation for this receptor.
View Article and Find Full Text PDFPurpose: Cancer is one of the most important life-threatening diseases in the world. The current efforts to combat cancer are being focused on molecular-targeted therapies. The main purpose of such approaches is based on targeting cancer cell-specific molecules to minimize toxicity for the normal cells.
View Article and Find Full Text PDFCyclooxygenase (COX) inhibitors have been shown to exert anti-angiogenic and anti-tumor activities on many types of malignant tumors. These anticancer properties make it worthwhile to examine the possible benefit of combining COX inhibitors with other anti-cancer agents. In the present study, we evaluated the potential of deracoxib (DER) in potentiating antitumor activity of doxorubicin (DOX) in canine mammary carcinoma cells (CMT-U27).
View Article and Find Full Text PDFThe present study evaluated the effects of doxorubicin (DOX) and deracoxib (DER), as single agents and in combination treatments, on antioxidant parameters in the canine mammary carcinoma cell line CMT-U27. The cells were exposed to DOX and DER for 24, 48 and 72 h. The viability and malondialdehyde (MDA), nitric oxide (NO), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSHPx) and total glutathione (GSH) activities of CMT-U27 cells were determined.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2014
A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based 'cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2.
View Article and Find Full Text PDFScientificWorldJournal
June 2013
Cyclooxygenase (COX) inhibitors, already widely used for the treatment of pain and inflammation, are considered as promising compounds for the prevention and treatment of neoplasia. The aim of our study was to determine the direct antiproliferative effects of nonsteroidal anti-inflammatory drugs (NSAIDs), piroxicam and deracoxib, at a variety of concentrations as both single and combined treatments on canine mammary carcinoma cell line CMT-U27 and to understand the mechanisms of cell death. MTT assay was performed to determine cell viability, and flow cytometric analyses were performed to evaluate apoptosis and cell cycle alterations.
View Article and Find Full Text PDF