Glucose is the essential energy source for the brain, whose deficit, triggered by energy deprivation or therapeutic agents, can be fatal. Increased appetite is the key behavioral defense against hypoglycemia; however, the central pathways involved are not well understood. Here, we describe a glucoprivic feeding pathway by tyrosine hydroxylase (TH)-expressing neurons from nucleus of solitary tract (NTS), which project densely to the hypothalamus and elicit feeding through bidirectional adrenergic modulation of agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons.
View Article and Find Full Text PDFNeuroendocrinology
February 2021
Background: Melanin-concentrating hormone (MCH)-expressing neurons have been implicated in regulation of energy homeostasis and reward, yet the role of their electrical activity in short-term appetite and reward modulation has not been fully understood.
Objectives: We investigated short-term behavioral and physiological effects of MCH neuron activity manipulations.
Methods: We used optogenetic and chemogenetic approaches in Pmch-cre transgenic mice to acutely stimulate/inhibit MCH neuronal activity while probing feeding, locomotor activity, anxiety-like behaviors, glucose homeostasis, and reward.