Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide caused by Platyhelminthes of the genus Schistosoma. The treatment of schistosomiasis relies on the long-term application of a single safe drug, praziquantel (PZQ). Unfortunately, PZQ is very effective on adult parasites and poorly on larval stage and immature juvenile worms; this can partially explain the re-infection in endemic areas where patients are likely to host parasites at different developmental stages concurrently.
View Article and Find Full Text PDFParasitic diseases cause significant global morbidity and mortality particularly in the poorest regions of the world. Schistosomiasis, one of the most widespread neglected tropical diseases, affects more than 200 million people worldwide. Histone deacetylase (HDAC) inhibitors are prominent epigenetic drugs that are being investigated in the treatment of several diseases, including cancers and parasitic diseases.
View Article and Find Full Text PDFThe search of new therapeutic tools for the treatment of cancer is being a challenge for medicinal chemists. Due to their role in different pathological conditions, histone deacetylase (HDAC) enzymes are considered valuable therapeutic targets. HDAC6 is a well-investigated HDAC-class IIb enzyme mainly characterized by a cytoplasmic localization; HDAC8 is an epigenetic eraser, unique HDAC-class I member that displays some aminoacidic similarity to HDAC6.
View Article and Find Full Text PDFSchistosomiasis is a neglected tropical disease caused by parasitic flatworms (blood fluke) of the genus Schistosoma. Parasites acquire most nutrients for their development and sustainment within the definitive host either by ingestion into the gut or across the body surface. Over the years, the best conditions for long-term maintenance of parasites in vitro have been thoroughly established.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by a progressive-fibrosing phenotype. IPF has been associated with aberrant HDAC activities confirmed by our immunohistochemistry studies on HDAC6 overexpression in IPF lung tissues. We herein developed a series of novel HDAC6 inhibitors, having low inhibitory potency over HDAC1 and HDAC8, as potential pharmacological tools for IPF treatment.
View Article and Find Full Text PDFHistone deacetylase inhibitors (HDACi) have emerged as promising therapeutics for the treatment of neurodegeneration, cancer, and rare disorders. Herein, we report the development of a series of spiroindoline-based HDAC6 isoform-selective inhibitors based on the X-ray crystal studies of the hit . We identified compound as the most potent and selective HDAC6 inhibitor of the series.
View Article and Find Full Text PDFIn this work we describe the synthesis of potent and selective quinolone-based histone deacetylase 6 (HDAC6) inhibitors. The quinolone moiety has been exploited as an innovative bioactive cap-group for HDAC6 inhibition; its synthesis was achieved by applying a multicomponent reaction. The optimization of potency and selectivity of these products was performed by employing computational studies which led to the discovery of the diethylaminomethyl derivatives 7g and 7k as the most promising hit molecules.
View Article and Find Full Text PDFSchistosomiasis is one of the most devastating neglected tropical parasitic diseases caused by trematodes of the genus Schistosoma. Praziquantel (PZQ) is today the only drug used in humans and animals for the treatment of schistosomiasis but unfortunately it is poorly effective on larval and juvenile stages of the parasite. Therefore, it is urgent the discovery of new drug targets and compounds.
View Article and Find Full Text PDFCurr Protein Pept Sci
May 2021
Ligand-linked changes in the aggregation state of biological macromolecules occur and have importance in several physiological processes, e.g., the response of hormone receptors, cooperative ligand binding, and others.
View Article and Find Full Text PDFSchistosomiasis is a neglected tropical disease mainly affecting the poorest tropical and subtropical areas of the world with the impressive number of roughly 200 million infections per year. Schistosomes are blood trematode flukes of the genus Schistosoma causing symptoms in humans and animals. Organ morbidity is caused by the accumulation of parasite eggs and subsequent development of fibrosis.
View Article and Find Full Text PDFThe chemical analysis of the sponge afforded the known sesquiterpene quinone avarone, along with its reduced form avarol. To further explore the role of the thiazinoquinone scaffold as an antiplasmodial, antileishmanial and antischistosomal agent, we converted the quinone avarone into the thiazinoquinone derivative thiazoavarone. The semisynthetic compound, as well as the natural metabolites avarone and avarol, were pharmacologically investigated in order to assess their antiparasitic properties against sexual and asexual stages of , larval and adult developmental stages of (eggs included), and also against promastigotes and amastigotes of and .
View Article and Find Full Text PDFSchistosomiasis is the most significant neglected tropical parasitic disease caused by helminths in terms of morbidity and mortality caused by helminths. In this work, we present the antischistosomal activity against of a rationally selected small set of thiazinoquinone derivatives, some of which were previously found to be active against and others synthesized ad hoc. The effects on larvae, juvenile, and adult parasite viability as well as on egg production and development were investigated, resulting in the identification of new multistage antischistosomal hit compounds.
View Article and Find Full Text PDFSchistosomiasis (also known as bilharzia) is a neglected tropical disease caused by platyhelminths of the genus . The disease is endemic in tropical and subtropical areas of the world where water is infested by the intermediate parasite host, the snail. More than 800 million people live in endemic areas and more than 200 million are infected and require treatment.
View Article and Find Full Text PDFBackground: Novel anti-schistosomal multi-stage drugs are needed because only a single drug, praziquantel, is available for the treatment of schistosomiasis and is poorly effective on larval and juvenile stages of the parasite. Schistosomes have a complex life-cycle and multiple developmental stages in the intermediate and definitive hosts. Acetylation and deacetylation of histones play pivotal roles in chromatin structure and in the regulation of transcription in eukaryotic cells.
View Article and Find Full Text PDFSchistosomiasis, one of the most prevalent neglected parasitic diseases affecting humans and animals, is caused by the Platyhelminthes of the genus Schistosoma. Schistosomes are the only trematodes to have evolved sexual dimorphism and the constant pairing with a male is essential for the sexual maturation of the female. Pairing is required for the full development of the two major female organs, ovary and vitellarium that are involved in the production of different cell types such as oocytes and vitellocytes, which represent the core elements of the whole egg machinery.
View Article and Find Full Text PDFBackground: The p53 signalling pathway, which controls cell fate, has been extensively studied due to its prominent role in tumor development. The pathway includes the tumor supressor protein p53, its vertebrate paralogs p63 and p73, and their negative regulators MDM2 and MDM4. The p53/p63/p73-MDM system is ancient and can be traced in all extant animal phyla.
View Article and Find Full Text PDFPeroxiredoxins (Prxs) are ubiquitary proteins able to play multiple physiological roles, that include thiol-dependent peroxidase, chaperone holdase, sensor of H2O2, regulator of H2O2-dependent signal cascades, and modulator of the immune response. Prxs have been found in a great number of human pathogens, both eukaryotes and prokaryotes. Gene knock-out studies demonstrated that Prxs are essential for the survival and virulence of at least some of the pathogens tested, making these proteins potential drug targets.
View Article and Find Full Text PDFUnderstanding the structural determinants relevant to the formation of supramolecular assemblies of homo-oligomeric proteins is a traditional and central scope of structural biology. The knowledge thus gained is crucial both to infer their physiological function and to exploit their architecture for bionanomaterials design. Protein nanotubes made by one-dimensional arrays of homo-oligomers can be generated by either a commutative mechanism, yielding an 'open' structure (e.
View Article and Find Full Text PDFPeroxiredoxins (Prxs) and glutathione peroxidases (Gpxs) provide the majority of peroxides reducing activity in the cytoplasm. Both are peroxidases but differences in the chemical mechanism of reduction of oxidative agents, as well as in the reactivity of the catalytically active residues, confer peculiar features on them. Ultimately, Gpx should be regarded as an efficient peroxides scavenger having a high-reactive selenocysteine (Sec) residue.
View Article and Find Full Text PDFSerine hydroxymethyltransferases (SHMTs) play an essential role in one-carbon unit metabolism and are used in biomimetic reactions. We determined the crystal structure of free (apo) and pyridoxal-5'-phosphate-bound (holo) SHMT from Methanocaldococcus jannaschii, the first from a hyperthermophile, from the archaea domain of life and that uses H₄MPT as a cofactor, at 2.83 and 3.
View Article and Find Full Text PDFThioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2012
Plasmodium falciparum is the vector of the most prevalent and deadly form of malaria, and, among the Plasmodium species, it is the one with the highest rate of drug resistance. At the basis of a rational drug design project there is the selection and characterization of suitable target(s). Thioredoxin reductase, the first protection against reactive oxygen species in the erythrocytic phase of the parasite, is essential for its survival.
View Article and Find Full Text PDF2-Cys peroxiredoxins (Prxs) play two different roles depending on the physiological status of the cell. They are thioredoxin-dependent peroxidases under low oxidative stress and ATP-independent chaperones upon exposure to high peroxide concentrations. These alternative functions have been associated with changes in the oligomerization state from low-(LMW) to high-molecular-weight (HMW) species.
View Article and Find Full Text PDFNADPH-dependent flavoreductases are important drug targets. During their enzymatic cycle thiolates and selenolates that have high affinity for transition metals are generated. Auranofin (AF), a gold-containing compound, is classified by the World Health Organization as an antirheumatic agent and it is indicated as the scaffold for the development of new anticancer and antiparasitic drugs.
View Article and Find Full Text PDFSchistosomiasis is the second most widespread human parasitic disease. It is principally treated with one drug, praziquantel, that is administered to 100 million people each year; less sensitive strains of schistosomes are emerging. One of the most appealing drug targets against schistosomiasis is thioredoxin glutathione reductase (TGR).
View Article and Find Full Text PDF