ACS Appl Mater Interfaces
May 2024
An ideal vehicle with a high transfection efficiency is crucial for gene delivery. In this study, a type of cationic carbon dot (CCD) known as APCDs were first prepared with arginine (Arg) and pentaethylenehexamine (PEHA) as precursors and conjugated with oleic acid (OA) for gene delivery. By tuning the mass ratio of APCDs to OA, APCDs-OA conjugates, namely, APCDs-0.
View Article and Find Full Text PDFFor the first time, the International Symposium on Fungal Stress was joined by the XIII International Fungal Biology Conference. The International Symposium on Fungal Stress (ISFUS), always held in Brazil, is now in its fourth edition, as an event of recognized quality in the international community of mycological research. The event held in São José dos Campos, SP, Brazil, in September 2022, featured 33 renowned speakers from 12 countries, including: Austria, Brazil, France, Germany, Ghana, Hungary, México, Pakistan, Spain, Slovenia, USA, and UK.
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2023
Nucleus targeting is tremendously important in cancer therapy. Cationic carbon dots (CCDs) are potential nanoparticles which might enter cells and penetrate nuclear membranes. Although some CCDs have been investigated in nucleus targeting and applied in nuclear imaging, the CCDs derived from drugs, that are able to target the nucleus, bind with DNA and inhibit the growth of cancer cells have not been reported.
View Article and Find Full Text PDFThe highly conserved small GTPase Cdc42 regulates polarized cell growth and morphogenesis from yeast to humans. We previously reported that Cdc42 activation exhibits oscillatory dynamics at cell tips of cells. Mathematical modeling suggests that this dynamic behavior enables a variety of symmetric and asymmetric Cdc42 activation distributions to coexist in cell populations.
View Article and Find Full Text PDFAdaptation to the nutritional environment is critical for all cells. RAS GTPase is a highly conserved GTP-binding protein with crucial functions for cell growth and differentiation in response to environmental conditions. Here, we describe a novel mechanism connecting RAS GTPase to nutrient availability in fission yeast.
View Article and Find Full Text PDFRNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth.
View Article and Find Full Text PDFActive Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation.
View Article and Find Full Text PDFBiochem Soc Trans
December 2013
Cell polarization is fundamental to many cellular processes, including cell differentiation, cell motility and cell fate determination. A key regulatory enzyme in the control of cell morphogenesis is the conserved Rho GTPase Cdc42, which breaks symmetry via self-amplifying positive-feedback mechanisms. Additional mechanisms of control, including competition between different sites of polarized cell growth and time-delayed negative feedback, define a cellular-level system that promotes Cdc42 oscillatory dynamics and modulates activated Cdc42 intracellular distribution.
View Article and Find Full Text PDFCells promote polarized growth by activation of Rho-family protein Cdc42 at the cell membrane. We combined experiments and modeling to study bipolar growth initiation in fission yeast. Concentrations of a fluorescent marker for active Cdc42, Cdc42 protein, Cdc42-activator Scd1, and scaffold protein Scd2 exhibited anticorrelated fluctuations and oscillations with a 5-minute average period at polarized cell tips.
View Article and Find Full Text PDFMethods Cell Biol
December 2010
The microtubule cytoskeleton has an important role in the control of mitochondrial distribution in higher eukaryotes. In humans, defects in axonal mitochondrial transport are linked to neurodegenerative diseases. This chapter highlights fission yeast Schizosaccharomyces pombe as a powerful genetic model system for the study of microtubule-dependent mitochondrial movement, dynamics and inheritance.
View Article and Find Full Text PDFThe conserved NDR kinase regulates cell morphogenesis and polarized cell growth in different eukaryotic cells ranging from yeast to neurons. Although studies have unraveled the mechanism of regulation of NDR kinase activity, the mechanism of morphology control by NDR and the effectors that mediate NDR function are unknown. Via a chemical genetic approach, we show that the fission yeast NDR homolog, Orb6 kinase, maintains polarized cell growth at the cell tips by spatially regulating the localization of Cdc42 GTPase, a key morphology regulator.
View Article and Find Full Text PDFMitochondrial biogenesis requires the contribution of two genomes and of two compartmentalized protein synthesis systems (nuclear and mitochondrial). Mitochondrial protein synthesis is unique on many respects, including the use of a genetic code with deviations from the universal code, the use of a restricted number of transfer RNAs, and because of the large number of nuclear encoded factors involved in assembly of the mitochondrial biosynthetic apparatus. The mitochondrial biosynthetic apparatus is involved in the actual synthesis of a handful of proteins encoded in the mitochondrial DNA.
View Article and Find Full Text PDFMaintenance of cell morphology is essential for normal cell function. For eukaryotic cells, a growing body of recent evidence highlights a close interdependence between mitochondrial function, the cytoskeleton, and cell cycle control mechanisms; however, the molecular details of this interconnection are still not completely understood. We have identified a novel protein, Bot1p, in the fission yeast Schizosaccharomyces pombe.
View Article and Find Full Text PDFControl of cellular dimensions and cell symmetry are critical for development and differentiation. Here we provide evidence that the putative Rho-GAP Rga4p of Schizosaccharomyces pombe controls cellular dimensions. rga4 Delta cells are wider in diameter and shorter in length, whereas Rga4p overexpression leads to reduced diameter of the growing cell tip.
View Article and Find Full Text PDFCell morphogenesis is of fundamental significance in all eukaryotes for development, differentiation, and cell proliferation. In fission yeast, Drosophila Furry-like Mor2 plays an essential role in cell morphogenesis in concert with the NDR/Tricornered kinase Orb6. Mutations of these genes result in the loss of cell polarity.
View Article and Find Full Text PDFThe plus ends of microtubules have been speculated to regulate the actin cytoskeleton for the proper positioning of sites of cell polarization and cytokinesis. In the fission yeast Schizosaccharomyces pombe, interphase microtubules and the kelch repeat protein tea1p regulate polarized cell growth. Here, we show that tea1p is directly deposited at cell tips by microtubule plus ends.
View Article and Find Full Text PDFWe have cloned a fission yeast (Schizosaccharomyces pombe) homologue of Ini, a novel RING-finger-like protein recently identified in rat that interacts with the connexin43 (cx43) promoter and might be important for the response of the cx43 gene to estrogen. S. pombe cells deleted for ini1(+) fail to form colonies and arrest with an elongated cell phenotype, indicating a cell cycle block.
View Article and Find Full Text PDFThe p21-activated kinase (PAK) homolog, Shk1, is a critical component of a multifunctional Ras/Cdc42/PAK complex required for viability, polarized growth and cell shape, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. Substrate targets of the Shk1 kinase have not previously been described. Here we show that the S.
View Article and Find Full Text PDFIn the fission yeast Schizosaccharomyces pombe, proper establishment and maintenance of cell polarity require Orb6p, a highly conserved serine/threonine kinase involved in regulating both cell morphogenesis and cell cycle control. Orb6p localizes to the cell tips during interphase and to the cell septum during mitosis. To investigate the mechanisms involved in Orb6p function, we conducted a two-hybrid screen to identify proteins that interact with Orb6p.
View Article and Find Full Text PDFThe molecular mechanisms that temporally and spatially coordinate cell morphogenesis with the cell cycle remain poorly understood. Here we describe the characterization of fission yeast Mob2p, a novel protein required for regulating cell polarity and cell cycle control. Deletion of mob2 is lethal and causes cells to become spherical, with depolarized actin and microtubule cytoskeletons.
View Article and Find Full Text PDF