Whole-body euglycaemia is partly maintained by two cellular processes that encourage glucose uptake in skeletal muscle, the insulin- and contraction-stimulated pathways, with research suggesting convergence between these two processes. The normal structural integrity of the skeletal muscle requires an intact actin cytoskeleton as well as integrin-associated proteins, and thus those structures are likely fundamental for effective glucose uptake in skeletal muscle. In contrast, excessive extracellular matrix (ECM) remodelling and integrin expression in skeletal muscle may contribute to insulin resistance owing to an increased physical barrier causing reduced nutrient and hormonal flux.
View Article and Find Full Text PDFKey Points: Patients with renal failure undergoing maintenance haemodialysis are associated with insulin resistance and protein metabolism dysfunction. Novel research suggests that disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in haemodialysis. ILK, PINCH1 and pFAK were significantly decreased in haemodialysis compared to controls, whereas Rac1 and Akt2 showed no different between groups.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
The investigation of variations in dielectric properties of blood based on its biochemical profile is important for determining the feasibility of developing electromagnetic non-invasive sensing systems for monitoring the levels of various metabolites in blood. In this paper, the real and imaginary parts of dielectric permittivity are measured as a function of lactate concentration in the 30-60 GHz frequency range using two different measurement techniques. The blood samples are collected from a healthy subject undergoing three different exercise modes and the dielectric properties are measured with an open-ended coaxial probe technique and a custom-made millimeter wave transmission system.
View Article and Find Full Text PDFTo explore wild barley as a source of useful alleles for yield improvement in breeding, we have carried out a genome-wide association scan using the nested association mapping population HEB-25, which contains 25 diverse exotic barley genomes superimposed on an ~70% genetic background of cultivated barley. A total of 1420 HEB-25 lines were trialled for nine yield-related grain traits for 2 years in Germany and Scotland, with varying N fertilizer application. The phenotypic data were related to genotype scores for 5398 gene-based single nucleotide polymorphism (SNP) markers.
View Article and Find Full Text PDFBarley is cultivated more widely than the other major world crops because it adapts well to environmental constraints, such as drought, heat, and day length. To better understand the genetic control of local adaptation in barley, we studied development in the nested association mapping population HEB-25, derived from crossing 25 wild barley accessions with the cultivar 'Barke'. HEB-25 was cultivated in replicated field trials in Dundee (Scotland) and Halle (Germany), differing in regard to day length, precipitation, and temperature.
View Article and Find Full Text PDF