Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program.
View Article and Find Full Text PDFHispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.
View Article and Find Full Text PDFThe human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs). Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging.
View Article and Find Full Text PDFBackground: Lysine demethylase 5C (KDM5C) has been implicated in the development of several human cancers. This study aims to investigate the role of KDM5C in the progression of colorectal cancer (CRC) and explore the associated molecular mechanism.
Methods: Bioinformatics tools were employed to predict the target genes of KDM5C in CRC.
Mitochondria (MT) participate in most metabolic activities of mammalian cells. A near-unidirectional mitochondrial transfer from T cells to cancer cells was recently observed to "metabolically empower" cancer cells while "depleting immune cells," providing new insights into tumor-T cell interaction and immune evasion. Here, we leverage single-cell RNA-seq technology and introduce MERCI, a statistical deconvolution method for tracing and quantifying mitochondrial trafficking between cancer and T cells.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) identified over fifty loci associated with lung cancer risk. However, the genetic mechanisms and target genes underlying these loci are largely unknown, as most risk-associated-variants might regulate gene expression in a context-specific manner. Here, we generated a barcode-shared transcriptome and chromatin accessibility map of 117,911 human lung cells from age/sex-matched ever- and never-smokers to profile context-specific gene regulation.
View Article and Find Full Text PDFThe molecular regulation of human hematopoietic stem cell (HSC) maintenance is therapeutically important, but limitations in experimental systems and interspecies variation have constrained our knowledge of this process. Here, we have studied a rare genetic disorder due to MECOM haploinsufficiency, characterized by an early-onset absence of HSCs in vivo. By generating a faithful model of this disorder in primary human HSCs and coupling functional studies with integrative single-cell genomic analyses, we uncover a key transcriptional network involving hundreds of genes that is required for HSC maintenance.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
September 2022
Purpose: To assess the association between intestinal venous blood (IVB) circulating tumor cells (CTCs) and clinicopathological parameters in stage I-III colorectal cancer (CRC) patients.
Methods: Participants were retrospectively retrieved, who were admitted to our hospital or took annual physical exams between December 1, 2015 and December 31, 2018. A negative enrichment-immunofluorescence in situ hybridization (NE-imFISH) technique was used to isolate and identify CTCs.
Genome-wide association studies in combination with single-cell genomic atlases can provide insights into the mechanisms of disease-causal genetic variation. However, identification of disease-relevant or trait-relevant cell types, states and trajectories is often hampered by sparsity and noise, particularly in the analysis of single-cell epigenomic data. To overcome these challenges, we present SCAVENGE, a computational algorithm that uses network propagation to map causal variants to their relevant cellular context at single-cell resolution.
View Article and Find Full Text PDFWith burgeoning human disease genetic associations and single-cell genomic atlases covering a range of tissues, there are unprecedented opportunities to systematically gain insights into the mechanisms of disease-causal variation. However, sparsity and noise, particularly in the context of single-cell epigenomic data, hamper the identification of disease- or trait-relevant cell types, states, and trajectories. To overcome these challenges, we have developed the SCAVENGE method, which maps causal variants to their relevant cellular context at single-cell resolution by employing the strategy of network propagation.
View Article and Find Full Text PDFMotivation: Genome-wide profiling of transcription factor binding and chromatin states is a widely-used approach for mechanistic understanding of gene regulation. Recent technology development has enabled such profiling at single-cell resolution. However, an end-to-end computational pipeline for analyzing such data is still lacking.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2020
Retinoblastoma (Rb) is the most prevalent intraocular malignancy in children, with a worldwide survival rate <30%. We have developed a cancerous model of Rb in retinal organoids derived from genetically engineered human embryonic stem cells (hESCs) with a biallelic mutagenesis of the gene. These organoid Rbs exhibit properties highly consistent with Rb tumorigenesis, transcriptome, and genome-wide methylation.
View Article and Find Full Text PDFPurpose: To explore the diagnostic value of pancreatic perfusion CT combined with contrast-enhanced CT in one-time scanning (PCECT) in pancreatic neuroendocrine tumors (PNETs) and to evaluate the difference of perfusion parameters between different grades of PNETs.
Materials And Methods: From October 2016 to December 2018, forty consecutive patients with histopathological-proven PNETs were identified retrospectively that received PCECT for the preoperative PNETs evaluation. Two board certified radiologists who were blinded to the clinical data evaluated the images independently.
Motivation: At present, a fundamental challenge in single-cell RNA-sequencing data analysis is functional interpretation and annotation of cell clusters. Biological pathways in distinct cell types have different activation patterns, which facilitates the understanding of cell functions using single-cell transcriptomics. However, no effective web tool has been implemented for single-cell transcriptome data analysis based on prior biological pathway knowledge.
View Article and Find Full Text PDFFront Cell Dev Biol
February 2020
Eye diseases (EDs) represent a group of disorders affecting the visual system, most of which can lead to visual impairment and blindness. Accumulating evidence reveals that non-coding RNAs (ncRNAs) are closely associated with a wide variety of EDs. However, abundant associations between ncRNAs and EDs are scattered across the published literature, obstructing a global view of ncRNA-ED associations.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2020
Engineered organoids by sequential introduction of key mutations could help modeling the dynamic cancer progression. However, it remains difficult to determine gene paths which were sufficient to capture cancer behaviors and to broadly explain cancer mechanisms. Here, as a case study of colorectal cancer (CRC), functional and dynamic characterizations of five types of engineered organoids with different mutation combinations of five driver genes (, and ) showed that sequential introductions of all five driver mutations could induce enhanced activation of more hallmark signatures, tending to cancer.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2019
Alzheimer's disease (AD), a degenerative disease of the central nervous system, is the most common form of dementia in old age. The complexity and behavior of circular RNA (circRNA)-associated competing endogenous RNA (ceRNA) network remained poorly characterized in AD. The aim of this study was to elucidate the regulatory networks of dysregulated circRNAs from ceRNA view and identify potential risk circRNAs involved in AD pathogenesis.
View Article and Find Full Text PDFEpigenetic alterations, including 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and nucleosome positioning (NP), in cell-free DNA (cfDNA) have been widely observed in human diseases, and many available cfDNA-based epigenome-wide profiles exhibit high sensitivity and specificity in disease detection and classification. However, due to the lack of efficient collection, standardized quality control, and analysis procedures, efficiently integrating and reusing these data remain considerable challenges. Here, we introduce CFEA (http://www.
View Article and Find Full Text PDFBackground: Sex differences in glioma incidence and outcome have been previously reported but remain poorly understood. Many sex differences that affect the cancer risk were thought to be associated with cancer evolution.
Methods: In this study, we used an integrated framework to infer the timing and clonal status of mutations in ~600 diffuse gliomas from The Cancer Genome Atlas (TCGA) including glioblastomas (GBMs) and low-grade gliomas (LGGs), and investigated the sex difference of mutation clonality.
Breast cancer is a very complex and heterogeneous disease with variable molecular mechanisms of carcinogenesis and clinical behaviors. The identification of prognostic risk factors may enable effective diagnosis and treatment of breast cancer. In particular, numerous gene-expression-based prognostic signatures were developed and some of them have already been applied into clinical trials and practice.
View Article and Find Full Text PDFDespite highly successful treatments for localized prostate cancer (PCa), prognostic biomarkers are needed to improve patient management and prognosis. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are key regulators with biological and clinical significance. By transcriptome analysis, we identified a set of consistently dysregulated lncRNAs in PCa across different datasets and revealed an eight-lncRNA signature that significantly associated with the biochemical recurrence (BCR)-free survival.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) constitute an important layer of chromatin regulation that contributes to various biological processes and diseases. By interacting with chromatin, many lncRNAs can regulate that state of chromatin by recruiting chromatin-modifying complexes and thus control large-scale gene expression programs. However, the available information on interactions between lncRNAs and chromatin is hidden in a large amount of dispersed literature and has not been extensively collected.
View Article and Find Full Text PDF