Mammalian spermatogenesis is sustained by mitotic germ cells with self-renewal potential known as undifferentiated spermatogonia. Maintenance of undifferentiated spermatogonia and spermatogenesis is dependent on tightly co-ordinated transcriptional and post-transcriptional mechanisms. The RNA helicase DDX5 is expressed by spermatogonia but roles in spermatogenesis are unexplored.
View Article and Find Full Text PDFChange History: This Article has been retracted; see accompanying Retraction. Corrected online 20 January: In this Article, author Frank Rigo was incorrectly listed with a middle initial; this has been corrected in the online versions of the paper.
View Article and Find Full Text PDFCancer genome sequencing has implicated the cytosine deaminase activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) genes as an important source of mutations in diverse cancers, with APOBEC3B (A3B) expression especially correlated with such cancer mutations. To better understand the processes directing A3B over-expression in cancer, and possible therapeutic avenues for targeting A3B, we have investigated the regulation of A3B gene expression. Here, we show that A3B expression is inversely related to p53 status in different cancer types and demonstrate that this is due to a direct and pivotal role for p53 in repressing A3B expression.
View Article and Find Full Text PDFBackground: Prediction of pathological complete response (pCR) of primary breast cancer to neoadjuvant chemotherapy (NACT) may influence planned surgical approaches in the breast and axilla. The aim of this project is to assess the value of interim shear wave elastography (SWE), ultrasound (US) and magnetic resonance imaging (MRI) after 3 cycles in predicting pCR.
Methods: 64 patients receiving NACT had baseline and interim US, SWE and MRI examinations.
Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective for non-small cell lung cancer (NSCLC) patients with EGFR mutations, almost all these patients will eventually develop acquired resistance to EGFR-TKI. However, the molecular mechanisms responsible for gefitinib resistance remain still not fully understood. Here, we report that elevated DDX17 levels are observed in gefitinib-resistant NSCLC cells than gefitinib-sensitive cells.
View Article and Find Full Text PDFPurpose: CDK-activating kinase (CAK) is required for the regulation of the cell cycle and is a trimeric complex consisting of cyclin-dependent kinase 7 (CDK7), Cyclin H, and the accessory protein, MAT1. CDK7 also plays a critical role in regulating transcription, primarily by phosphorylating RNA polymerase II, as well as transcription factors such as estrogen receptor-α (ER). Deregulation of cell cycle and transcriptional control are general features of tumor cells, highlighting the potential for the use of CDK7 inhibitors as novel cancer therapeutics.
View Article and Find Full Text PDFis conventionally thought to prevent cancer formation and progression to metastasis, while mutant has transforming activities. However, in the clinic, mutation status does not accurately predict cancer progression. Here we report, based on clinical analysis corroborated with experimental data, that the p53 isoform Δ133p53β promotes cancer cell invasion, regardless of mutation status.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are short (21-23nt long) RNAs that post-transcriptionally regulate gene expression in plants and animals. They are key regulators in all biological processes. In mammalian cells miRNAs are loaded into one of the four members of the Argonaute (Ago) protein family to form the RNA-induced silencing complex (RISC).
View Article and Find Full Text PDFmiRNAs are small RNAs that are key regulators of gene expression in eukaryotic organisms. The processing of miRNAs is regulated by structural characteristics of the RNA and is also tightly controlled by auxiliary protein factors. Among them, RNA binding proteins play crucial roles to facilitate or inhibit miRNA maturation and can be controlled in a cell, tissue and species-specific manners or in response to environmental stimuli.
View Article and Find Full Text PDFT helper 17 (TH17) lymphocytes protect mucosal barriers from infections, but also contribute to multiple chronic inflammatory diseases. Their differentiation is controlled by RORγt, a ligand-regulated nuclear receptor. Here we identify the RNA helicase DEAD-box protein 5 (DDX5) as a RORγt partner that coordinates transcription of selective TH17 genes, and is required for TH17-mediated inflammatory pathologies.
View Article and Find Full Text PDFEstrogen receptor α (ERα) is the key transcriptional driver in a large proportion of breast cancers. We report that APOBEC3B (A3B) is required for regulation of gene expression by ER and acts by causing C-to-U deamination at ER binding regions. We show that these C-to-U changes lead to the generation of DNA strand breaks through activation of base excision repair (BER) and to repair by non-homologous end-joining (NHEJ) pathways.
View Article and Find Full Text PDFThe Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer.
View Article and Find Full Text PDFRNA helicases of the DEAD-box family are found in all eukaryotes, most bacteria and many archaea. They play important roles in rearranging RNA-RNA and RNA-protein interactions. DEAD-box proteins are ATP-dependent RNA binding proteins and RNA-dependent ATPases.
View Article and Find Full Text PDFp68 (DDX5) acts both as an ATP-dependent RNA helicase and as a transcriptional co-activator of several cancer-associated transcription factors, including the p53 tumor suppressor. p68 is aberrantly expressed in a high proportion of cancers, but the oncogenic drive for, or the consequences of, these expression changes remain unclear. Here we show that elevated p68 expression in a cohort of human breast cancers is associated significantly with elevated levels of the oncogenic protein kinase, Polo-like kinase-1 (PLK1).
View Article and Find Full Text PDFDEAD-box proteins represent the largest family of RNA helicases, present in all three kingdoms of life. They are involved in a variety of processes involving RNA metabolism and in some instances also in processes that use guide RNAs. Since their first descriptions in the late 1980s, the perception of their molecular activities has dramatically changed.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2013
Members of the DEAD box family of RNA helicases, which are characterised by the presence of twelve conserved motifs (including the signature D-E-A-D motif) within a structurally conserved 'helicase' core, are involved in all aspects of RNA metabolism. Apart from unwinding RNA duplexes, which established these proteins as RNA helicases, DEAD box proteins have been shown to also catalyse RNA annealing and to displace proteins from RNA. DEAD box proteins generally act as components of large multi-protein complexes and it is thought that interactions, via their divergent N- and C-terminal extensions, with other factors in the complexes may be responsible for the many different functions attributed to these proteins.
View Article and Find Full Text PDFMembers of the DEAD box family of RNA helicases are known to be involved in most cellular processes that require manipulation of RNA structure and, in many cases, exhibit other functions in addition to their established ATP-dependent RNA helicase activities. They thus play critical roles in cellular metabolism and in many cases have been implicated in cellular proliferation and/or neoplastic transformation. These proteins generally act as components of multi-protein complexes; therefore their precise role is likely to be influenced by their interacting partners and to be highly context-dependent.
View Article and Find Full Text PDFThe DEAD box RNA helicase p68 (Ddx5) is an important androgen receptor (AR) transcriptional co-activator in prostate cancer (PCa) and is over-expressed in late stage disease. β-Catenin is a multifunctional protein with important structural and signalling functions which is up-regulated in PCa and similar to p68, interacts with the AR to co-activate expression of AR target genes. Importantly, p68 forms complexes with nuclear β-Catenin and promotes gene transcription in colon cancer indicating a functional interplay between these two proteins in cancer progression.
View Article and Find Full Text PDFThe RNA helicase p68 (DDX5) is an established co-activator of the p53 tumour suppressor that itself has a pivotal role in orchestrating the cellular response to DNA damage. Although several factors influence the biological outcome of p53 activation, the mechanisms governing the choice between cell-cycle arrest and apoptosis remain to be elucidated. In the present study, we show that, while p68 is critical for p53-mediated transactivation of the cell-cycle arrest gene p21(WAF1/CIP1), it is dispensable for induction of several pro-apoptotic genes in response to DNA damage.
View Article and Find Full Text PDFIt is established that several DEAD box RNA helicases perform multiple functions in the cell, often through interactions with different partner proteins in a context-dependent manner. Several studies have shown that some DEAD box proteins play important roles as regulators of transcription, particularly as coactivators or cosuppressors of transcription factors that are themselves highly regulated. Two such RNA helicases are DDX5 (p68) and DDX17 (p72).
View Article and Find Full Text PDFThe DEAD-box RNA helicase p68 (DDX5) plays important roles in several cellular processes, including transcription, pre-mRNA processing, and microRNA (miRNA) processing. p68 expression is growth and developmentally regulated, and alterations in p68 expression and/or function have been implicated in tumor development. The p68 gene encodes an evolutionarily conserved, alternatively spliced, intron the function of which has to date remained unclear.
View Article and Find Full Text PDFThe DEAD box RNA helicases p68 (DDX5) and p72 (DDX17) play important roles in multiple cellular processes that are commonly dysregulated in cancers, including transcription, pre-mRNA processing/alternative splicing and miRNA processing. Although p68 and p72 appear to have some overlapping functions, they clearly also have distinct, nonredundant functions. Furthermore, their ability to interact with a variety of different factors and act as multifunctional proteins has the potential to impact on several different processes, and alterations in expression or function of p68 and/or p72 could have profound implications for cancer development.
View Article and Find Full Text PDF