Botanical sourcing seriously impacts the safety and potency of herbal medicines, restricting the development of the traditional Chinese medicinal industry. Rapid and convenient identification of plant resources is important to address this problem. Herein, we innovated a portable, intelligent, and integrated platform, termed the Smart Electronic Tongue (SET), for right recognizing bonsai of different subspecies and origins.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
DNA is considered as a prospective candidate for the next-generation data storage medium, due to its high coding density, long cold-storage lifespan, and low energy consumption. Despite these advantages, challenges remain in achieving high-fidelity, fully integrated, and cost-efficient DNA storage system. In this study, a homemade digital microfluidic (DMF)-based compact DNA data storing pipeline is orchestrated to complete the entire process from the synthesis to the sequencing.
View Article and Find Full Text PDFEmerging point-of-care testing methods are extremely beneficial for personalized assessments of trace element metabolism including selenium (Se). Given the lack of timely evaluation methods for well-received Se fortification, an electrochemical solution was developed based on the recently identified urinary selenosugar (Sel) as a marker. The Se content of crude urine was rapidly determined (∼5 min), and the square-wave voltammetric responses of a Se-selective probe (SeSE) composed of liquid metal amalgam demonstrated comparable performance (e.
View Article and Find Full Text PDFDiabetes mellitus and its associated secondary complications have become a pressing global healthcare issue. The current integrated theranostic plan involves a glucometer-tandem pump. However, external condition-responsive insulin delivery systems utilizing rigid glucose sensors pose challenges in on-demand, long-term insulin administration.
View Article and Find Full Text PDFThe cooperative diagnosis of non-coding RNAs (ncRNAs) can accurately reflect the state of cell differentiation and classification, laying the foundation of precision medicine. However, there are still challenges in simultaneous analyses of multiple ncRNAs and the integration of biomarker data for cell typing. In this study, DNA framework-based programmable atom-like nanoparticles (PANs) are designed to develop molecular classifiers for intra-cellular imaging of multiple ncRNAs associated with cell differentiation.
View Article and Find Full Text PDFHerein, we present a poly-adenine (polyA)-mediated programmably engineered FRET-nanoflare for ratiometric intracellular ATP imaging with anti-interference capability. The programmable polyA attachment is advantageous in enhancing the signal response for ATP. Moreover, the FRET-based nanoflare is capable of avoiding false-positive signals due to probe degradation in a complex environment, which has great potential for clinical diagnosis.
View Article and Find Full Text PDFMicromachines (Basel)
September 2022
Vibration energy harvesting technology is expected to solve the power supply and endurance problems of wireless sensor systems, realize the self-power supply of wireless sensor systems in coal mines, and promote the intelligent development of coal mine equipment. A combined beam tri-stable piezoelectric energy harvester (CTPEH) is designed by introducing magnetic force into the combined beam structure. In order to explore the vibration characteristics of CTPEH, a nonlinear magnetic model is obtained based on the magnetic dipole theory, and the dynamic equation of the system is established using the Lagrange theorem and Rayleigh-Ritz theory.
View Article and Find Full Text PDFTo improve the output performance of the piezoelectric energy harvester, this paper proposed the design of a linear-arc composite beam piezoelectric energy harvester (PEH-C). First the nonlinear restoring force model of a composite beam was obtained by the numerical simulation method. Afterwards, the corresponding coupled governing equations were derived by using the generalized Hamilton principle, laying the foundation for subsequent in-depth research.
View Article and Find Full Text PDFCollecting vibration energy in the environment is expected to solve the problem of the self-power supply of wireless monitoring nodes in underground coal mines. By introducing nonlinear factors, a linear-arch bi-stable piezoelectric energy harvester (LBPEH) is designed. In order to reveal the influence of system parameters on the dynamic characteristics of LBPEH, the magnetic force model is established by the magnetizing current method, and the restoring force model is acquired through experimental measurement.
View Article and Find Full Text PDFThis paper proposes a parameter identification method for the multiparameter identification study of the linear-arch composite beam piezoelectric energy harvester. According to the voltage response characteristics of the system under short-circuit conditions, the mechanical equation is solved by transient excitation, combined with the backbone curve theory and logarithmic attenuation method, to obtain the system's linear damping, linear stiffness, and nonlinear stiffness. According to the voltage response characteristics of the system under open-circuit conditions, combined with the electrical equations, the system electromechanical coupling coefficient and equivalent capacitance coefficient are obtained; numerical simulation results show that the identification parameters have good accuracy.
View Article and Find Full Text PDFIn order to explore the dynamic characteristics of the linear-arch beam tri-stable piezoelectric energy harvester (TPEH), a magnetic force model was established by the magnetic dipole method, and the linear-arch composite beam nonlinear restoring force model was obtained through experiments. Based on the Euler-Bernoulli beam theory, a system dynamic model is established, and the influence of the horizontal distance, vertical distance and excitation acceleration of magnets on the dynamic characteristics of the system is simulated and analyzed. Moreover, the correctness of the theoretical results is verified by experiments.
View Article and Find Full Text PDFTo improve the energy harvesting performance of an energy harvester, a novel bistable piezoelectric energy harvester with variable potential well (BPEH-V) is proposed by introducing a spring to the external magnet from a curve-shaped beam bistable harvester (CBH-C). First, finite element simulation was performed in COMSOL software to validate that the curved beam configuration was superior to the straight beam in power generation performance, which benefits energy harvesting. Moreover, the nonlinear magnetic model was obtained by using the magnetic dipoles method, and the nonlinear restoring force model of the curve-shaped beam was acquired based on fitting the experimental data.
View Article and Find Full Text PDFThe limited reaction time and sample volume in the confined space of microfluidic devices give considerable importance to the development of more effective biosensing interfaces. Herein, the self-assembling of tetrahedral framework nucleic acids (FNAs) with controllable size on the interface of the microfluidic microchannels is studied. Compared with macroscopic turbulence control on traditional micro-structured microfluidic surface, the novel FNA-engineered microfluidic interface successfully constructs a 3D reaction space at nanoscale by raising DNA probes away from the surface.
View Article and Find Full Text PDFAntibiotics abuse now poses a global threat to public health. Monitoring their residual levels as well as metabolites are of great importance, still challenges remain in in situ tracing during the circulation. Herein, taking the typical antibacterial Enrofloxacin (ENR) as a subject, a paper-based aptasensor was tailored by manipulating a duo of aptameric moieties to "sandwich" the target in a lateral-flow regime.
View Article and Find Full Text PDFThe enantioselective construction of a quaternary stereocenter in 2,3-dihydrofuran frameworks has been realized via the palladium-catalyzed asymmetric [3 + 2] cycloaddition of tertiary propargylic carbonates with β-ketoesters enabled by a chiral ferrocene/benzimidazole-based bidentate P,N-ligand. The reaction was significantly promoted by loss of CO to irreversibly form π-propargylpalladium or allenylpalladium intermediates. This protocol features a good tolerance of functional groups in both tertiary propargylic carbonates and β-ketoesters, thereby delivering a variety of highly functionalized chiral 2,3-dihydrofurans bearing a quaternary stereocenter at the 2-position and an exocyclic double bond at the 3-position in good chemical yields and high enantioselectivities (up to 98% ee).
View Article and Find Full Text PDFA highly enantioselective palladium-catalyzed [3 + 2] cycloaddition of propargylic esters with β-ketoesters has been realized by employing a newly developed chiral ferrocene/benzimidazole-based P,N-ligand. This protocol features a good tolerance of functional groups in both propargylic esters and β-ketoesters, thereby delivering a variety of highly functionalized chiral 2,3-dihydrofurans bearing an exocyclic double bond at the 3-position in good yields and with high enantioselectivities (up to 98% ee).
View Article and Find Full Text PDFThe first copper-catalyzed asymmetric formal [4 + 2] cycloaddition of o-aminophenol derivatives with propargylic esters as the bis-electrophilic C2 synthons for the stereoselective construction of chiral 2,3,4-trisubstituted 2H-1,4-benzoxazines bearing an exocyclic double bond has been developed. By using a structurally modified chiral ketimine P,N,N-ligand, a wide range of optically active 2H-1,4-benzoxazines were prepared in high yields and with excellent enantioselectivities (up to 97% ee).
View Article and Find Full Text PDFThe first highly diastereo- and enantioselective propargylic alkylation of acyclic ketone enamines to form vicinal tertiary stereocenters has been reported by employing copper catalysis in combination with a bulky and structurally rigid tridentate ketimine P,N,N-ligand.
View Article and Find Full Text PDFAn enantioselective synthesis of highly functionalized dihydrofurans through a copper-catalyzed asymmetric [3+2] cycloaddition of β-ketoesters with propargylic esters has been developed. With a combination of Cu(OTf)2 and a chiral tridentate P,N,N ligand as the catalyst, a variety of 2,3-dihydrofurans bearing an exocyclic double bond at the 2 position were obtained in good chemical yields and with good to high enantioselectivities. The exocyclic double bond can be hydrogenated in a highly diastereoselective fashion to give unusual cis-2,3-dihydrofuran derivatives, thus further enhancing the scope of this transformation.
View Article and Find Full Text PDFA chiral tridentate ketimine P,N,N-ligand has been successfully applied in the copper-catalyzed enantioselective propargylic substitution of propargylic acetates with a variety of β-dicarbonyl compounds, in which excellent enantioselectivities (up to >99% ee) and high yields have been obtained.
View Article and Find Full Text PDFThe first enantioselective copper-catalyzed decarboxylative propargylic alkylation has been developed. Treatment of propargyl β-ketoesters with a catalyst, prepared in situ from [Cu(CH3 CN)4 BF4 ] and a newly developed chiral tridentate ketimine P,N,N-ligand under mild reaction conditions, generates β-ethynyl ketones in good yields and with high enantioselectivities without requiring the pregeneration of ketone enolates. This new process provides facile access to a range of chiral β-ethynyl ketones in a highly enantioenriched form.
View Article and Find Full Text PDF