Publications by authors named "Fuli Deng"

Activation of fatty acids as acyl-adenylates by fatty acid-AMP ligase (FAAL) is a well-established process contributing to the formation of various functional natural products. Enzymatic characterization of FAALs is pivotal for unraveling both the catalytic mechanism and its role in specific biosynthetic pathways. In this study, we recombinantly expressed and characterized a novel FAAL derived from marine Pseudoalteromonas citrea (PcFAAL).

View Article and Find Full Text PDF

Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon-carbon coupling to hydrobenzoin. In the absence of an organic substrate, H evolution proceeds via the Volmer-Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low.

View Article and Find Full Text PDF

To determine the association between cell-free DNA fetal fraction (cffDNA) and various prenatal characters to better guide the clinical application of noninvasive prenatal screening (NIPS), a retrospective cohort study of 27,793 women with singleton pregnancies was conducted. Results indicated that no significant difference on cffDNA between trisomy/sex chromosome aneuploidy (SCA) and non-trisomy groups was found. However, the fetal fraction (FF) in the T18 and T13 subgroups were significantly lower than that in the non-trisomy group, while the FF in the T21 group was significantly higher than the non-trisomy group.

View Article and Find Full Text PDF

Lipid metabolism is closely linked to adiposity. Prader-Willi syndrome (PWS) is a typical genetic disorder causing obesity; however, the distinct lipidomic profiles in PWS children have not been thoroughly investigated. Herein, serum lipidomics analyses were simultaneously explored in PWS, simple obesity (SO), and normal children (Normal).

View Article and Find Full Text PDF

This study aimed to evaluate the individual and combined effects of chemically protected sodium butyrate (CSB) and xylo-oligosaccharide (XOS) on performance, anti-inflammatory and antioxidant capacity, intestinal morphology and microbiota of broilers. A total of 280 one-day-old Arbor Acres broilers were randomly distributed into 5 treatments: basal diet (CON), basal diet supplemented with 100 mg/kg aureomycin and 8 mg/kg enramycin (ABX), 1000 mg/kg CSB (CSB), 100 mg/kg XOS (XOS), and mixture of 1000 mg/kg CSB and 100 mg/kg XOS (MIX), respectively. On d 21, ABX, CSB, and MIX decreased feed conversion ratio compared with CON (CON: ABX: CSB: MIX = 1.

View Article and Find Full Text PDF

In aqueous mediums, the chemical environment for catalytic reactions is not only comprised of water molecules but also of corresponding ionized species, i.e., hydronium ions, which can impact the mechanism and kinetics of a reaction.

View Article and Find Full Text PDF

A new phospholipase D from marine sp. JT01 (MsPLD) was recombinantly expressed and biochemically characterized. The optimal reaction temperature and pH of MsPLD were determined to be 35 °C and 8.

View Article and Find Full Text PDF

Mining of Phospholipase D (PLD) with high activity and stability has attracted strong interest for investigation. A novel PLD from marine sp. JT01 (MsPLD) was biochemically and structurally characterized in our previous study; however, the short half-life time () under its optimum reaction temperature seriously hampered its further applications.

View Article and Find Full Text PDF

Xylooligosaccharide (XOS) has tremendous prebiotic potentials for gut health, but the relevant mechanisms are unclear. Herein, we confirmed the positive effects of dietary XOS enhancing gut barrier in a pig model via suppressing the expression of pro-inflammatory cytokines (IL-6 and IL-8). Meanwhile, XOS increased beneficial microbes Lactobacillus and decreased potential pathogenic bacteria.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of chemically protected sodium butyrate (CSB) on growth performance and the early development and function of small intestine in broilers as one potential substitute for antibiotics. A total of 192 one-day-old Arbor Acres male broilers were randomly assigned into three dietary treatment groups (eight replicates per treatment): the control (CON) diet; ANT diet, CON diet supplemented with the antibiotics (enramycin, 8 mg/kg and aureomycin, 100 mg/kg); CSB diet, CON diet supplemented with 1000 mg/kg CSB, respectively. The results showed that dietary CSB and antibiotics addition significantly improved the growth performance of broilers by increasing the body weight gain (BWG) and feed conversion ratio (FCR) during different stages ( < 0.

View Article and Find Full Text PDF

The present study prepared a size-controllable, uniform, and surfactant-free emulsification to investigate the ζ potential of the solvent effect. The results showed that the ratio of electrophoretic mobility changed with droplet diameter, and the correct factor of the ζ potential was determined. The effect of functional groups on the ζ potential was further studied in the presence of an organic hydrophilic solvent.

View Article and Find Full Text PDF

Introduction: Mogroside V is the main effective ingredient of Siraitia grosvenorii used as a natural sweet food as well as a traditional Chinese medicine. The sample pre-treatment prior to chromatographic analysis requires large amounts of toxic organic solvents and is time consuming.

Objective: To develop an effective and simple method for extracting and determining mogroside V of Siraitia grosvenorii.

View Article and Find Full Text PDF

Three-liquid-phase partitioning of Pd(II), Pt(IV) and Rh(III) in systems of S201(diisoamyl sulfide)/nonane-EOPO(polyethylene oxide-polypropylene oxide random block copolymer)-Na(2)SO(4)-H(2)O was investigated. Experimental results indicated that the selective enrichment of Pd(II), Pt(IV) and Rh(III) respectively into the S201 organic top phase, EOPO-based middle phase and Na(2)SO(4) bottom phase was achieved by control over the phase behavior of the three-liquid-phase systems (TLPS). The microphase mass transfer behavior of Pt(IV), Pd(II) and Rh(III) was closely related to the micellization of EOPO molecules.

View Article and Find Full Text PDF