The glucan extract of () has multiple biological properties, similar to extracts of other natural edible fungi. Drugs traditionally used in cancer treatment are associated with several drawbacks, such as side effects, induction of resistance, and poor prognosis, and many recent studies have focused on polysaccharides extracted from natural sources as alternatives. Our study focuses on the therapeutic role and molecular mechanism of action of in breast cancer progression.
View Article and Find Full Text PDFSynergistic chemo-phototherapy has offered tremendous potential in cancer treatment. Nevertheless, nanosystems usually suffer from the complexity of multicomponents (polymeric or inorganic materials), which results in carrier-related toxicity issues. Moreover, the GSH over-expression of tumor cells seriously compromises ROS therapeutic efficiency.
View Article and Find Full Text PDFBackground: β-Glucan from Lentinus edodes (LNT), an edible mushroom, possesses strong anticancer activity. However, the therapeutic effects of LNT during the occurrence and progression of breast cancer and their underlying molecular mechanisms have not been elucidated.
Methods: Mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) transgenic mice were used as a breast cancer mouse model.
Intracellular oxidative amplification can effectively destroy tumor cells. Additionally, Fe-mediated Fenton reaction often converts cytoplasm H O to generate extensive hypertoxic hydroxyl radical ( OH), leading to irreversible mitochondrion damage for tumor celleradication, which is widely famous as tumor chemodynamic therapy (CDT). Unfortunately, intracellular overexpressed glutathione (GSH) always efficiently scavenges OH, resulting in the significantly reduced CDT effect.
View Article and Find Full Text PDFfluorescent imaging by using the new contrast agents emitted at short-wavelength infrared region (NIR II, 1000-1700 nm) presents an unprecedent advantages in imaging sensitivity and spatial resolution over traditional near-infrared (NIR) light. Recently, Nd-based rare-earth nanocrystals have attracted considerable attention due to the high quantum yield (∼40%) of their emission at NIR II. However, undesirable capture by reticuloendothelial system to bring strong background signal is unsatisfying for tumor discrimination.
View Article and Find Full Text PDFThe combination of photothermal therapy and chemotherapy are developing as a promising clinical strategy but it urgently needs the high exploration of intelligent multifunctional drug delivery nanovectors. In this paper, we used a versatile method to construct mesoporous polydopamine nanovehicles (MPDA) with the dendritic mesopores loaded with a clinical chemotherapeutic drug, Doxorubicin (MPDA@DOX). The monodisperse nanoagents are spherical with a size of ∼160 nm and pore size of approximately 10 nm.
View Article and Find Full Text PDFIon-interference therapy, which utilizes ions to disturb intracellular biological processes, provides inspiration for tumor therapy. Artificially reversing osmotic pressure by transporting large amounts of physiological ions to tumor cells is a straightforward yet low-toxic strategy for ion-interference therapy. However, it is hard to achieve due to the serious limitations of single-ion delivery.
View Article and Find Full Text PDFFree radical-based anticancer modality has been widely applied to cancer therapies. However, it still faces challenges of low delivery efficiency and poor selectivity of free radical generation specifically toward tumors. Herein, a virus-mimicking hollow mesoporous disulfide-bridged organosilica is designed to encapsulate •C precursor 2, 2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH), which is then enclosed by tannic acid (TA)/Fe photothermal assembly and further cloaked by natural killer (NK) cell membrane to achieve synergistic thermodynamic-chemodynamic therapy.
View Article and Find Full Text PDFCarrier-free nanodrug with exceptionally high drug payload has attracted increasing attentions. Herein, we construct a pH/ROS cascade-responsive nanodrug which could achieve tumor acidity-triggered targeting activation followed by circularly amplified ROS-triggered drug release via positive-feedback loop. The di-selenide-bridged prodrug synthesized from vitamin E succinate and methotrexate (MTX) self-assembles into nanoparticles (VSeM); decorating acidity-cleavable PEG onto VSeM surface temporarily shields the targeting ability of MTX to evade immune clearance and consequently elongate circulation time.
View Article and Find Full Text PDFCorrection for 'Tumor acidity-responsive carrier-free nanodrugs based on targeting activation via ICG-templated assembly for NIR-II imaging-guided photothermal-chemotherapy' by Kaihang Xue et al., Biomater. Sci.
View Article and Find Full Text PDFCarrier-free nanodrugs composed of photosensitizers and chemotherapeutic drugs show great potential in synergistic photothermal-chemotherapy. However, the targeting specificity to tumor cells is still a major obstacle for carrier-free nanodrugs. Meanwhile, almost all exogenous tumor-targeting ligands show no therapeutic effect by themselves.
View Article and Find Full Text PDFA carrier-free theranostic nanodrug directly coassembled using a NIR probe and a chemotherapeutic drug is a promising alternative for cancer theranostics. Nevertheless, this nanodrug still faces the limitations of short blood circulation and inefficient tumor accumulation/tumoral cellular uptake in vivo. Meanwhile, most exogenous targeting ligands and poly(ethylene glycol) have no therapeutic effect.
View Article and Find Full Text PDFCarrier-free nanotheranostics directly assembled by using clinically used photosensitizers and chemotherapeutic drugs are a promising alternative to tumor theranostics. However, the weak interaction-driven assembly still suffers from low structural stability against disintegration, lack of targeting specificity, and poor stimulus-responsive property. Moreover, almost all exogenous ligands possess no therapeutic effect.
View Article and Find Full Text PDFCarrier-free nanodrugs, generated via the straightforward small-molecule self-assembly of anticancer drugs, provide a promising route for cancer chemotherapy. However, their low structural stability, lack of targeting specificity, and poor stimulus responsiveness are still limiting their therapeutic effect. Inspired by Watson-Crick G[triple bond, length as m-dash]C base pairing, the FDA-approved chemo-drug methotrexate (MTX, which can bind with folate receptors) and 5-fluorouracil (5-FU, a DNA/RNA synthetase inhibitor) were adopted for direct assembly into self-recognizing MTX-5-FU nanoparticles via "Watson-Crick-like base pairing"-driven precise supramolecular assembly.
View Article and Find Full Text PDFThe medical application of nanotechnology is promising for cancer chemotherapy. However, most of the small-molecule drug assemblies still have such disadvantages as serious drug leakage and nonideal synergistic mechanisms, resulting in undesired therapeutic effect. Both nucleoside analogue-based clofarabine (CA) and methotrexate (MTX) were used as the first-line anticancer medication.
View Article and Find Full Text PDF