Publications by authors named "Fujuan Xu"

Radiotherapy is the mainstay for abdomen and pelvis cancers treatment. However, high energy ray would inflict gastrointestinal (GI) system and adversely disrupt the treatment. The anti-oxidative agents provide a potential route for protecting body from radiation-induced injuries.

View Article and Find Full Text PDF

Metal nanozyme has attracted wide interest for biomedicine, and a highly catalytic material in the physiological environment is highly desired. However, catalytic selectivity of nanozyme is still highly challenging, limiting its wide application. Here, we show a trimetallic (triM) nanozyme with highly catalytic activity and environmental selectivity.

View Article and Find Full Text PDF

Catalytic nanomaterials can be used extrinsically to combat diseases associated with a surplus of reactive oxygen species (ROS). Rational design of surface morphologies and appropriate doping can substantially improve the catalytic performances. In this work, a class of hollow polyvinyl pyrrolidone-protected PtPdRh nanocubes with enhanced catalytic activities for in vivo free radical scavenging is proposed.

View Article and Find Full Text PDF

High energy ionizing radiation was widely used in medical diagnosis and cancer radiation therapy. The high dose of X ray or ray can cause the damage of cancerous tissue as well as healthy tissue during therapy. Therefore, it is urgent to develop chemical agents to protect the healthy tissue from high energy ray invasion.

View Article and Find Full Text PDF

Black phosphorus (BP), as an emerging successor to layered two-dimensional materials, has attracted extensive interest in cancer therapy. Toxicological studies on BP are of great importance for potential biomedical applications, yet not systemically explored. Herein, toxicity and oxidative stress of BP quantum dots (BPQDs) at cellular, tissue, and whole-body levels are evaluated by performing the systemic in vivo and in vitro experiments.

View Article and Find Full Text PDF

Two-dimensional WS materials have attracted wide attention in condensed physics and materials science due to its unique geometric and electronic structures. Particularly, WS shows extraordinary catalytic activities when its size decreases to ultrasmall, which provides potential opportunities for medical applications. In this work, WS quantum dots with strong catalytic properties were used for in vitro and in vivo protection from ionizing radiation induced cell damages.

View Article and Find Full Text PDF