ZmCBL8-1 enhances salt stress tolerance in maize by improving the antioxidant system to neutralize ROS homeostasis and inducing Na/H antiporter gene expressions of leaves. Calcineurin B-like proteins (CBLs) as plant-specific calcium sensors have been explored for their roles in the regulation of abiotic stress tolerance. Further, the functional variations in ZmCBL8, encoding a component of the salt overly sensitive pathway, conferred the salt stress tolerance in maize.
View Article and Find Full Text PDFMetal ion-nanocluster coordination complexes can produce a variety of functional engineered nanomaterials with promising characteristics to enable widespread applications. Herein, the visualization observation of the interactions of metal ions and fullerene derivatives, particularly anionic fullerenols (Fol), were carried out in aqueous solutions. The alkali metal salts only resulted in salting out of Fol to gain re-soluble sediments, whereas multivalent metal cations (M, = 2, 3) modulated further assembly of Fol to produce insoluble hybrids.
View Article and Find Full Text PDFPlant Physiol Biochem
June 2023
Calcineurin B-like proteins (CBLs) as specific calcium sensors that interact with CBL-interacting protein kinases (CIPKs) play a key role in the regulation of plant development and abiotic stress tolerance. In this study, we isolated and characterized the CIPK32 gene from Zea mays. ZmCIPK32 showed that it comprised 440 amino acids and a conserved NAF motif responsible for the interaction with CBLs localized in the cytoplasm and cell membrane.
View Article and Find Full Text PDFCysteine proteases (CPs) are vital proteolytic enzymes that play critical roles in various plant processes. However, the particular functions of CPs in maize remain largely unknown. We recently identified a pollen-specific CP (named PCP), which highly accumulated on the surface of maize pollen.
View Article and Find Full Text PDFCadmium (Cd) is a major environmental pollutant and poses a risk of transfer into the food chain through contaminated plants. Mechanisms underlying Cd tolerance and hyperaccumulation in plants are not fully understood. Proteomics-based approaches facilitate an in-depth understanding of plant responses to Cd stress at the systemic level by identifying Cd-inducible differentially abundant proteins (DAPs).
View Article and Find Full Text PDFBackground: Various environmental factors are capable of oxidative stress to result in limiting plant development and agricultural production. Fullerene-based carbon nanomaterials can enable radical scavenging and positively regulate plant growth. Even so, to date, our knowledge about the mechanism of fullerene-based carbon nanomaterials on plant growth and response to oxidative stress is still unclear.
View Article and Find Full Text PDFCysteine proteases, belonging to the C1-papain family, play a major role in plant growth and development, senescence, and immunity. There is evidence to suggest that pollen cysteine protease (CP) (ZmCP03) is involved in regulating the anther development and pollen formation in maize. However, there is no report on the genome-wide identification and comparison of in the pollen coat and other tissues in maize.
View Article and Find Full Text PDFIn the present study, the role of quaternary ammonium iminofullerenes (IFQA) on the root growth of plant seedlings was investigated. The root elongation of Arabidopsis and maize exposed to 20 and 50 mg/L of IFQA was promoted under normal and osmotic stress conditions, respectively. In the meantime, the root active absorption area and adenosine triphosphate content in roots of maize seedlings were enhanced by IFQA treatment, however, the contents of hydrogen peroxide (HO) and malondialdehyde in roots were down-regulated.
View Article and Find Full Text PDFIn plants, 3´,5´-cyclic adenosine monophosphate (cAMP) is an important second messenger with varied functions; however, only a few adenylyl cyclases (ACs) that synthesize cAMP have been identified. Moreover, the biological roles of ACs/cAMP in response to stress remain largely unclear. In this study, we used quantitative proteomics techniques to identify a maize heat-induced putative disease-resistance RPP13-like protein 3 (ZmRPP13-LK3), which has three conserved catalytic AC centres.
View Article and Find Full Text PDFIn this study, novel water-soluble quaternary ammonium salts of iminofullerenes (IFQA) were synthesized by nitrene chemistry in combination with quaternization and identified as [C(NCHCHNH·CFCOO)·10HO] by various spectroscopies. Maize and seeds were used to test the bioactivity of IFQA in seed germination. Compared with the control, maize seed exposure to 50 mg/L IFQA (normal: 73.
View Article and Find Full Text PDFThe cell wall is the most striking feature that distinguishes plant cells from animal cells. It plays an essential role in cell shape, stability, growth and protection. Despite being present in small amounts, cell wall proteins (CWPs) are crucial components of the cell wall.
View Article and Find Full Text PDFAt the eight-leaf stage, maize is highly sensitive to stresses such as drought, heat, and their combination, which greatly affect its yield. At present, few studies have analyzed maize response to combined drought and heat stress at the eight-leaf stage. In this study, we measured certain physical parameters of maize at the eight-leaf stage when it was exposed to drought, heat, and their combination.
View Article and Find Full Text PDFABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize.
View Article and Find Full Text PDFMaize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies.
View Article and Find Full Text PDFThe presence of abundant storage proteins in plant embryos greatly impedes seed proteomics analysis. Vicilin (or globulin-1) is the most abundant storage protein in maize embryo. There is a need to deplete the vicilins from maize embryo extracts for enhanced proteomics analysis.
View Article and Find Full Text PDFThe presence of high-abundance proteins in complex protein mixtures often masks low-abundance proteins and causes loss of resolution of 2DE. Protein fractionation steps conducted prior to 2DE can enhance the detection of low-abundance proteins and improve the resolution of 2DE. Here, we report a method to prefractionate soluble protein extracts based on protein thermal denaturation.
View Article and Find Full Text PDFCotton (Gossypium hirsutum) often encounters abiotic stress such as drought and high salinity during its development, and its productivity is significantly limited by those adverse factors. To investigate the molecular adaptation mechanisms of this plant species to abiotic stress, we identified two genes encoding Di19-like Cys2/His2 zinc-finger proteins in cotton. GFP fluorescence assay demonstrated that GhDi19-1 and GhDi19-2 are two nuclear-localized proteins.
View Article and Find Full Text PDFTo enhance the survival probability in cold stress, plant cells often increase their cold- and freezing-tolerance in response to low, nonfreezing temperatures by expressing some cold-related genes. In present study, a cotton gene encoding tonoplast intrinsic protein (TIP) was isolated from a cotton seedling cDNA library, and designated as GhTIP1;1. GFP fluorescent microscopy indicated that GhTIP1;1 protein was localized to the vacuolar membrane.
View Article and Find Full Text PDFPlant tissues usually contain high levels of proteases and secondary metabolites that severely interfere with protein extraction, separation, and identification. Preparation of high-quality protein samples from plant tissues for proteomic analysis represents a great challenge. This article briefly describes the critical points in protein separation, especially secondary metabolites in plant tissues, and removal strategy.
View Article and Find Full Text PDFUDP-Glycosyltransferases (UGT) are a large family of enzymes, which catalyze the transfer of a sugar from an activated sugar donor to an acceptor molecule. Both in plant and in mammalian, they are important in maintenance of cellular homeostasis. In this study, two genes (designated GhUGT1 and GhUGT2, respectively) encoding putative UGT were isolated from cotton fiber cDNA library.
View Article and Find Full Text PDF