Publications by authors named "Fujiya Gomi"

Most pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). Spherical morphology formed in three-dimensional (3D) cultures and the effects of anticancer drugs differ between epithelial and mesenchymal PDAC cell lines. In the human pancreas, cancer cells form 3D tumors, migrate to adjacent tissues, and metastasize to other organs.

View Article and Find Full Text PDF

Background: The number of patients with prolonged critical illness (PCI) has been increasing in many countries, and the adrenal gland plays an important role in maintaining homeostasis during PCI. Chronic disease burden is reportedly associated with shorter telomere lengths in human tissues. Telomere shortening in human somatic cells is largely dependent on cell divisions, and critically short telomeres lead to cellular dysfunction and aging.

View Article and Find Full Text PDF

Three-dimensional (3D) culture of cancer cells mimics the environment. Recently, we reported that pancreatic ductal adenocarcinoma (PDAC) cell lines with epithelial and mesenchymal features formed differently shaped spheres in 3D culture. However, only PK-8 cells, the epithelial PDAC cell line with the highest expression among the eight PDAC cell lines, formed multiple cystic spheres in 3D culture.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is an intractable cancer that is difficult to diagnose early, and there is no cure other than surgery. PDAC is classified as an adenocarcinoma that has limited effective anticancer drug and molecular-targeted therapies compared to adenocarcinoma found in other organs. A large number of cancer cell lines have been established from patients with PDAC that have different genetic abnormalities, including four driver genes; however, little is known about the differences in biological behaviors among these cell lines.

View Article and Find Full Text PDF

Signaling pathways involving signal transducer and activator of transcription 3 (STAT3) play key roles in the aggressiveness of pancreatic ductal adenocarcinoma (PDAC), including their tumorigenesis, invasion, and metastasis. Cancer stem cells (CSCs) have been correlated with PDAC aggressiveness, and activation of STAT3 is involved in the regulation of CSC properties. Here, we investigated the involvement of interleukin-6 (IL-6) or the leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway and their role in pancreatic CSCs.

View Article and Find Full Text PDF

Genetic, transcriptional, and morphological differences have been reported in pancreatic ductal adenocarcinoma (PDAC) cases. We recently found that epithelial or mesenchymal features were enhanced in three-dimensional (3D) cultures compared to two-dimensional (2D) cultures. In this study, we examined the differences in the morphological and functional characteristics of eight PDAC cell lines in 2D and 3D cultures.

View Article and Find Full Text PDF

Polyvinyl alcohol (PVA) is a water-soluble synthetic polymer used in eye drops, embolization particles, and artificial cartilage. It has also been shown to cause expansion of functional multipotent self-renewing hematopoietic stem cells under serum-free conditions. In this study, we examined the effects of PVA on human pancreatic ductal adenocarcinoma (PDAC) cell lines using 2-dimensional (2D) and 3D-cultures with serum-free medium.

View Article and Find Full Text PDF

Fibroblast growth factor receptor 4 (FGFR4), one of four tyrosine kinase receptors for FGFs, is involved in diverse cellular processes. Activation of FGF19/FGFR4 signaling is closely associated with cancer development and progression. In this study, we examined the expression and roles of FGF19/FGFR4 signaling in human pancreatic ductal adenocarcinoma (PDAC).

View Article and Find Full Text PDF

Gangliosides, a group of glycosphingolipids, are known to be cell surface markers and functional factors in several cancers. However, the association between gangliosides and pancreatic ductal adenocarcinoma (PDAC) has not been well elucidated. In this study, we examined the expression and roles of ganglioside GM2 in PDAC.

View Article and Find Full Text PDF

In pancreatic cancer, morphologically and functionally heterogeneous cancer cells reside within the same patient. The heterogeneity is believed to promote metastasis and resistance to chemoradiotherapy. MIA PaCa-2, an established human pancreatic ductal adenocarcinoma (PDAC) cell line, contains round and spindle-shaped adherent cells, as well as, round floating cells.

View Article and Find Full Text PDF

Context: Although numerous theories are reported on sex differences in longevity, the underlying biological mechanisms remain unknown. We previously reported that telomere length in the zona reticularis cells of the human adrenal cortex was significantly longer in older than that in younger subjects. However, we could not evaluate sex differences in the telomere lengths.

View Article and Find Full Text PDF

Pancreatic cancer, composed of heterogeneous cancer cells, alters epithelial to mesenchymal features during growth and metastasis. In this study, we aimed to characterize pancreatic ductal adenocarcinoma (PDAC) cells showing epithelial or mesenchymal features in 3D culture. In 3D culture, PK-1 cells had high E-cadherin and low vimentin expression and exhibited a round-like appearance encircled by flat cells.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a major histological type of pancreatic cancer and remains one of the most lethal cancers with a high mortality rate owing to its aggressive growth, high metastatic rate, and recurrence. Recent studies on cancer stem cells (CSCs) have suggested that the aggressive growth, high metastatic rate, and recurrence might be caused by the ability of CSCs to self-renew, differentiate, and drive tumorigenesis. Thus, CSCs are expected to be a therapeutic target for PDAC.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are a small group of cells within a tumor that preserve stemness and enhance regrowth of cancer cells. CSCs have important implications in resistance to conventional therapies and tumor relapse, although their detailed properties remain unknown. Thus, CSCs represent promising targets to improve cancer treatment.

View Article and Find Full Text PDF

β-Amyloid (Aβ) plays an important role in the early pathogenesis of Alzheimer's disease (AD). In vitro studies have demonstrated that Aβ oligomers induce hippocampal and neocortical neuronal death. However the neurotoxic mechanisms by which soluble Aβ oligomers cause neuronal damage and death remain to be fully elucidated.

View Article and Find Full Text PDF

β-Amyloid (Aβ) oligomers may play an important role in the early pathogenesis of Alzheimer's disease: cognitive impairment caused by synaptic dysfunction. Dystrophic neurites surrounding Aβ plaques, another pathological feature of Alzheimer's disease, are plaque-associated neuritic alterations preceding the appearance of synaptic loss. In the present review, we focus on the mechanism of dystrophic neurite formation by Aß oligomers, and discuss the neurotoxic role of Aβ-induced calsyntenin-3 in mediating dystrophic neurite formation.

View Article and Find Full Text PDF

β-Amyloid is generated by the sequential cleavage of amyloid precursor protein. Calsyntenin-1 and kinesin light chain-1 splice variant E (KLC1-E) have been proposed to regulate β-amyloid production from amyloid precursor protein. Vesicles containing calsyntenin-1 are transported from the Golgi apparatus to axons by interaction between calsyntenin-1 and KLC1 in their C-terminal regions.

View Article and Find Full Text PDF

Dystrophic neurites surrounding β-amyloid (Aβ) plaques precede neuronal death in Alzheimer disease. These neuritic alterations may be one of the initial stages for synaptic loss and dysfunction. However, intracellular pathways that cause local disruption of neuronal processes by Aβ remain to be fully elucidated.

View Article and Find Full Text PDF

Previously we reported that overexpression of MAP1B containing N-terminal 126 amino acids promoted neuronal death. Here, we identified α-, β-, and βIII-tubulins as proteins interacting with MAP1B 1-126 by two-hybrid and pull-down assays. Transfection experiments indicated that MAP1B 1-126 interacts with microtubules, but to a much lesser extent than two previously reported microtubule-binding domains.

View Article and Find Full Text PDF

β-Amyloid (Aβ) may play an important role in the pathogenesis of Alzheimer's disease. However, a causal relationship between Aβ oligomers and layer-specific neurodegeneration has not been clarified. Here we show up-regulation of calsyntenin (Cst)-3 in cultured neurons treated with Aβ oligomers and in Tg2576 mice.

View Article and Find Full Text PDF

Despite increased neurogenic differentiation markers in the hippocampal CA1 in Alzheimer disease, neurons are not replaced in CA1 and the neocortex in the disease. beta-Amyloid (Abeta) might cause deterioration of the brain microenvironment supporting neurogenesis and the survival of immature neurons. To test this possibility, we examined whether Abeta alters the expression of cell fate determinants in cerebral cortical cultures and in an Alzheimer disease mouse model (PrP-APP(SW)).

View Article and Find Full Text PDF

We investigate the aging effects of the hyperoxia-mediated induction of two antioxidants and three antioxidant enzymes in the rat brain. All of these genes responded to hyperoxia in young but not aged brains. Despite the partial inactivation of CuZn SOD and glutathione peroxidase by hyperoxia in aged rat brains, lipid peroxidation did not increase.

View Article and Find Full Text PDF

Under 60% oxygen, both the 50% and maximum survival times of old rats were markedly shortened, and the maximum survival time of young rats did not change although the 50% survival time was shortened. In addition, the mean body weight of the old rats decreased rapidly, while that of the young rats increased very slowly after the small decrease. In lungs of the young and old rats, the activities of catalase and Mn superoxide dismutase (SOD) were increased, while those of CuZn SOD and glutathione peroxidase remained unchanged.

View Article and Find Full Text PDF

Growth inhibitory factor (GIF), a brain-specific member of the metallothionein family (MT-III), has been characterized as a inhibitory substance for neurotrophic factors in Alzheimer's disease brains. However, the function of GIF, other than the inhibition of neurotrophic factors, remains unknown. We demonstrate here that exogenous GIF prevents neurite extension of cortical neurons in the early period of differentiation and the death of differentiated neurons caused by high oxygen exposure.

View Article and Find Full Text PDF