Publications by authors named "Fujise K"

The dysfunction of dopaminergic (DA) neurons is central to Parkinson's disease. Distinct synaptic vesicle (SV) populations, differing in neurotransmitter content (dopamine vs. glutamate), may vary due to differences in trafficking and exocytosis.

View Article and Find Full Text PDF

Fortilin, a 172-amino acid polypeptide, is a multifunctional protein that interacts with various protein molecules to regulate their functions. Although fortilin has been shown to interact with cytoskeleton proteins such as tubulin and actin, its interactions with the components of adherens junctions remained unknown. Using co-immunoprecipitation western blot analyses, the proximity ligation assay, microscale thermophoresis, and biolayer interferometry, we here show that fortilin specifically interacts with CTNNA3 (α-T-catenin), but not with CTNNA1, CTNNA2, or CTNNB.

View Article and Find Full Text PDF

The role of primary cilia has recently garnered significant attention in the field of neurodegeneration. This review explores the diversity of primary cilia in the mature brain and their interrelationships with a multitude of cellular structures, including axons and synapses. Importantly, an overview of the growing prominence of ciliary-related dysfunctions in neurodegenerative diseases is summarized, with a special emphasis on Parkinson's disease (PD) and neuropsychiatric disorders.

View Article and Find Full Text PDF

Recent studies have identified a family of rod-shaped proteins which includes VPS13 and ATG2 and are thought to mediate unidirectional lipid transport at intracellular membrane contacts by a bridge-like mechanism. Here, we show that one such protein, BLTP3A/UHRF1BP1, associates with VAMP7-positive vesicles via its C-terminal region and anchors them to lysosomes via the binding of its chorein domain containing N-terminal region to Rab7. Upon damage of lysosomal membranes and resulting mATG8 recruitment to their surface by CASM, BLTP3A first dissociates from lysosomes but then reassociates with them via an interaction of its LIR motif with mATG8.

View Article and Find Full Text PDF

Members of the synaptophysin and synaptogyrin family are vesicle proteins with four transmembrane domains. In spite of their abundance in synaptic vesicle (SV) membranes, their role remains elusive and only mild defects at the cellular and organismal level are observed in mice lacking one or more family members. Here, we show that coexpression with synapsin in fibroblasts of each of the four brain-enriched members of this family-synaptophysin, synaptoporin, synaptogyrin 1, and synaptogyrin 3-is sufficient to generate clusters of small vesicles in the same size range of SVs.

View Article and Find Full Text PDF

Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4, 5)P 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1KI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function.

View Article and Find Full Text PDF

Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4,5)P 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1KI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes can change their functions during and after a stroke, and understanding how these changes happen can lead to new treatments.
  • The enzyme ADAR1, which is typically not found in astrocytes, increases significantly in these cells after a stroke and contributes to negative outcomes by promoting inflammation and neuron death.
  • Lack of ADAR1 helps reduce brain damage and improve neurological functions after a stroke by lowering the activation of astrocytes and microglia, and preventing neuron apoptosis via inflammatory cytokines.
View Article and Find Full Text PDF

The members of the International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support Task Force have written a comprehensive summary of trials of the effectiveness of induced hypothermia (IH) or targeted temperature management (TTM) in comatose patients after cardiac arrest (CA). However, in-depth analysis of these studies is incomplete, especially since there was no significant difference in primary outcome between hypothermia versus normothermia in the recently reported TTM2 trial. We critically appraise trials of IH/TTM versus normothermia to characterize reasons for the lack of treatment effect, based on a previously published framework for what to consider when the primary outcome fails.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD), classified primarily between Crohn's disease and ulcerative colitis, is a collection of chronic gastrointestinal inflammatory conditions that cause multiple complications because of systemic alterations in the immune response. One major player is microRNA (miRNA), which is found to be associated with multiple pathways in mediating inflammation, especially those of a chronic nature in IBD, as well as irritable bowel syndrome. Although there have been studies linking miRNA alterations in IBD, even differentiating Crohn's disease and ulcerative colitis, this review focuses mainly on how miRNAs cause and mechanistically influence the pathologic complications of IBD.

View Article and Find Full Text PDF

Centronuclear myopathy (CNM) is a congenital myopathy characterised by centralised nuclei in skeletal myofibers. T-tubules, sarcolemmal invaginations required for excitation-contraction coupling, are disorganised in the skeletal muscles of CNM patients. Previous studies showed that various endocytic proteins are involved in T-tubule biogenesis and their dysfunction is tightly associated with CNM pathogenesis.

View Article and Find Full Text PDF

Fortilin is a 172-amino acid multifunctional protein present in both intra- and extracellular spaces. Although fortilin binds and regulates various cellular proteins, the biological role of extracellular fortilin remains unknown. Here we report that fortilin specifically interacts with TGF-β1 and prevents it from activating the TGF-β1 signaling pathway.

View Article and Find Full Text PDF

One of the helical anthracenes, [4]HA, in which two fused anthracene ends are spatially arranged top and bottom, exhibits a ratiometric fluorescence response due to the hydrostatic pressure-dependent intramolecular [4+4] photocyclodimerization. This ratiometric signalling comes from the formation of an intramolecular stacked species and its subsequent photoreaction upon hydrostatic pressurization. The ratiometric indexes as a function of hydrostatic pressure may enable us to quantify an unknown pressure in solutions.

View Article and Find Full Text PDF
Article Synopsis
  • Prostaglandin D2 (PGD2) plays a role in promoting inflammation and may contribute to vascular diseases like abdominal aortic aneurysm (AAA), but the involvement of its receptors, DP1 and DP2, hasn't been thoroughly studied in AAA.
  • In experiments using mice models, researchers found that DP1-deficient mice were protected from AAA formation, showing reduced inflammation and matrix metallopeptidase (MMP) activity.
  • The study suggests that targeting DP receptors with specific inhibitors could be a potential therapeutic approach to treat AAA, similar to their use in treating allergic and lung diseases.
View Article and Find Full Text PDF

A centronuclear myopathy (CNM) is a group of inherited congenital diseases showing clinically progressive muscle weakness associated with the presence of centralized myonuclei, diagnosed by genetic testing and muscle biopsy. The gene encoding dynamin 2, DNM2, has been identified as a causative gene for an autosomal dominant form of CNM. However, the information of a DNM2 variant alone is not always sufficient to gain a definitive diagnosis as the pathogenicity of many gene variants is currently unknown.

View Article and Find Full Text PDF

Heart failure (HF) has reached epidemic proportions in developed countries, affecting over 20 million people worldwide. Despite modern medical and device therapies, 60-70% of HF patients still die within 5 years of diagnosis as it relentlessly progresses through pervasive apoptotic loss of cardiomyocytes. Although fortilin, a 172-amino-acid anti-p53 molecule, is one of the most expressed proteins in the heart, its precise role there has remained unknown.

View Article and Find Full Text PDF

Complications related to atherosclerosis account for approximately 1 in 4 deaths in the United States and treatment has focused on lowering serum LDL-cholesterol levels with statins. However, approximately 50% of those diagnosed with atherosclerosis have blood cholesterol levels within normal parameters. Human fortilin is an anti-apoptotic protein and a factor in macrophage-mediated atherosclerosis and is hypothesized to protect inflammatory macrophages from apoptosis, leading to subsequent cardiac pathogenesis.

View Article and Find Full Text PDF

Podosomes are actin-rich adhesion structures formed in a variety of cell types, such as monocytic cells or cancer cells, to facilitate attachment to and degradation of the extracellular matrix (ECM). Previous studies showed that dynamin 2, a large GTPase involved in membrane remodeling and actin organization, is required for podosome function. However, precise roles of dynamin 2 at the podosomes remain to be elucidated.

View Article and Find Full Text PDF

Invited for the cover of this issue is Shinji Toyota and co-workers at Tokyo Institute of Technology and Okayama University of Science. The image depicts a spirally rising dragon to represent the helical molecular structures in the manuscript. Read the full text of the article at 10.

View Article and Find Full Text PDF

Polycyclic aromatic compounds consisting of four or five fused anthracene units were synthesized by PtCl -catalyzed cycloisomerization as novel long expanded helicenes. These compounds have helical structures with significant stacking of the terminal anthracene moieties at 0.33 nm interlayer distance.

View Article and Find Full Text PDF

Membrane remodeling is required for dynamic cellular processes such as cell division, polarization, and motility. BAR domain proteins and dynamins are key molecules in membrane remodeling that work together for membrane deformation and fission. In striated muscles, sarcolemmal invaginations termed T-tubules are required for excitation-contraction coupling.

View Article and Find Full Text PDF

The activity of AMPA-type glutamate receptor is involved in insulin release from pancreatic β-cells. However, the mechanism and dynamics that underlie AMPA receptor-mediated insulin release in β-cells is largely unknown. Here, we show that AMPA induces internalization of glutamate receptor 2/3 (GluR2/3), AMPA receptor subtype, in the mouse β-cell line MIN6.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons consisting of three fused anthracene units were designed as new π-conjugated compounds having helical structures. These expanded helicenes were synthesized by Pt-catalyzed cycloisomerization of the corresponding ethynyl-substituted precursors. The nonplanar and helical structure was confirmed by X-ray analysis and DFT calculations, and the barrier to helical inversion was estimated to be 34 kJ mol .

View Article and Find Full Text PDF