X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.
View Article and Find Full Text PDFThe removal of toxic heavy metal ions from wastewater is of great significance in the protection of the environment and human health. Poly(gamma-glutamic acid) (PGA) is a non-toxic, biodegradable, and highly water-soluble polymer possessing carboxyl and imino functional groups. Herein, water-insoluble PGA-based hydrogels were prepared, characterized, and investigated as heavy metal adsorbents.
View Article and Find Full Text PDFA phenylboronic-acid-modified amphiphilic block polyether is prepared via reaction of polyglycidol-block-poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide)-block-polyglycidol (Pluronic-PG) with 2-(N,N-dimethylaminomethyl)-5-aminomethyl phenylboronic acid using phosgene as a coupling reagent. The boronic-acid-modified non-cationic polymer binds plasmid pGL3 effectively, forms sub-µm polymer/DNA complex particles, and greatly facilitates the cell uptake of the plasmid. The efficiency of the polymer as a gene vector is evaluated in vitro by transfection of pGL3 to HeLa, COS-7 and HepG2 cells.
View Article and Find Full Text PDFWell-defined amphiphilic block-graft copolymers PCL-b-[DTC-co-(MTC-mPEG)] with polyethylene glycol methyl ether pendant chains were designed and synthesized. First, monohydroxyl-terminated macroinitiators PCL-OH were prepared. Then, ring-opening copolymerization of 2,2-dimethyltrimethylene carbonate (DTC) and cyclic carbonate-terminated PEG (MTC-mPEG) macromonomer was carried out in the presence of the macroinitiator in bulk to give the target copolymers.
View Article and Find Full Text PDFAmphiphilic triblock copolymers monomethoxyl poly(ethylene glycol) (mPEG)-b-poly(ε-caprolactone) (PCL)-b-poly(aminoethyl methacrylate)s (PAMAs) (mPECAs) were synthesized as gene delivery vectors. They exhibited lower cytotoxicity and higher transfection efficiency in COS-7 cells in presence of serum compared to 25 kDa bPEI. The influence of mPEG and PCL segments in mPECAs was evaluated by comparing with corresponding diblock copolymers.
View Article and Find Full Text PDFChem Commun (Camb)
August 2010
Phenylboronic acid-modified PEI was prepared by the reaction of 1800 Da PEI with 4-(bromomethyl)phenylboronic acid. It is much more effective than unmodified PEI for gene delivery. The covalently incorporated boronic acid groups achieve the greatly enhanced gene delivery efficiency partially through improving condensation ability to DNA, and partially through facilitating cell uptake due to interaction with ligands in cells.
View Article and Find Full Text PDFGold nanoparticles (GNPs) conjugated with low molecular weight polyethylenimine (PEI 800 Da) were synthesized, and their characteristics as gene transfection vectors were investigated. The polyethylenimine conjugated GNPs (GNP-PEI800s) can retard plasmid DNA completely at N/P ratios above 4 in electrophoresis on agarose gel, and they also render effective protection of DNA from attack by DNase. TEM imaging revealed that GNP-PEI800s with higher PEI grafting density resulted in more compact and smaller complexes with plasmid DNA, compared to those obtained with lower grafting density ones.
View Article and Find Full Text PDFWell-defined diblock copolymers, poly(ethylene glycol)-block-poly(glycidyl methacrylate)s (PEG-b-PGMAs), with different poly(glycidyl methacrylate) (PGMA) chains, were prepared via atom transfer radical polymerization (ATRP) from the same macromolecular initiator 2-bromoisobutyryl-terminated poly(ethylene glycol) (PEG). Ethyldiamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and polyethyleneimine (PEI) with an M(W) of 400 (PEI(400)) were used to decorate PEG-b-PGMAs to get the cationic polymers PEG-b-PGMA- oligoamines. These cationic polymers possessed high buffer capability and could condense plasmid DNA (pDNA) into nanoscaled complexes of 125-530 nm.
View Article and Find Full Text PDF