Publications by authors named "Fujiang Wen"

Lipid transfer proteins (LTPs), a class of small, ubiquitous proteins, play critical roles in various environmental stresses. However, their precise biological functions remain unknown. Here we isolated an extracellular matrix-localised LTP, NtLTP4, from Nicotiana tabacum.

View Article and Find Full Text PDF

Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in controlling seed size and seed yield.

View Article and Find Full Text PDF

WRKY transcription factors are involved in various processes, ranging from plant growth to abiotic and biotic stress responses. Group I WRKY members have been rarely reported compared with group II or III members, particularly in cotton (Gossypium hirsutum). In this study, a group I WRKY gene, namely, GhWRKY25, was cloned from cotton and characterized.

View Article and Find Full Text PDF

Artificial microRNA (amiRNA) has become the preferred viral defence that can be induced in plants. In this study, nine amiRNA target sites were selected that were based on the sequence characteristics of natural miRNAs in the cylindrical inclusion protein (CI), nuclear inclusion a protein (NIa), nuclear inclusion b protein (NIb), and coat protein (CP) genes of Potato virus Y (PVY(N)). These amiRNAs that exhibited high similarities to the sequences of PVY(N) and TEV-SD1 were considered.

View Article and Find Full Text PDF

Rice stripe disease, with the pathogen Rice stripe virus (RSV), is one of the most widespread and severe virus diseases. Cultivating a resistant breed is an essential and efficient method in preventing rice stripe disease. Following RNA interference (RNAi) theory, we constructed three RNAi binary vectors based on coat protein (CP), special-disease protein (SP) and chimeric CP/SP gene sequence.

View Article and Find Full Text PDF

Posttranscriptional gene silencing, also known as RNA interference, involves degradation of homologous mRNA sequences in organisms. In plants, posttranscriptional gene silencing is part of a defense mechanism against virus infection, and double-stranded RNA is the pivotal factor that induces gene silencing. In this paper, we got seven hairpin RNAs (hpRNAs) constructs against different hot-spot sequences of Tobacco mosaic virus (TMV) or Potato virus Y (PVY) genome.

View Article and Find Full Text PDF

In many species, the introduction of double-stranded RNA (dsRNA) induces potent and specific gene silencing, a phenomenon called RNA interference (RNAi). RNAi is the process of sequence-specific, posttranscriptional gene silencing (PTGS) in animals and plants, mediated by dsRNA homologous to the silenced genes. In plants, PTGS is part of a defense mechanism against virus infection, and dsRNA is the pivotal factor that induces gene silencing.

View Article and Find Full Text PDF

Zinc is an essential trace element in the human body and it participates in various pathways of metabolism. Cordyceps sinensis is a wellknown traditional Chinese medicine that contains cordycepin, cordycepic polysaccharides, proteins, vitamins, trace elements, and many other biological active materials. In this study, we cultured C.

View Article and Find Full Text PDF

RNA-mediated virus resistance is an effective way to obtain virus resistant plants and is regarded as a potential strategy with application value in plant resistant virus breeding because of its advantage of high biosafety and long duration. Whether the resistance can inherit stably is a critical factor affecting its application in agriculture. In this paper, several T0 progeny transgenic plants with different resistant levels and with different transgene copy numbers were selected for further study.

View Article and Find Full Text PDF

We have reported that cDNA derived from entire coat protein (CP) gene of potato virus Y (PVY) could induce resistance to PVY infection in transgenic tobacco plants, and the resistance was further demonstrated to be RNA-mediated rather than coat protein-mediated. In this study, we cloned cDNA fragments of 202 bp, 417 bp, and 603 bp in length derived from the 3' end of the PVY CP gene, and the cDNA fragments were introduced into tobacco (var. NC89) plants via Agrobacterium-mediated transformation system.

View Article and Find Full Text PDF