The seed method stands out as a straightforward and efficient approach for fabricating high-performance perovskite solar cells (PSCs). In this study, we propose the utilization of an antisolvent as an additive to induce crystal seeding, thereby facilitating the growth of wide-bandgap perovskite grains. Specifically, we introduce three commonly used antisolvents─ethyl acetate (EA), isopropanol (IPA), and chlorobenzene (CB)─directly into the perovskite precursor solution to generate perovskite seeds, which serve to promote subsequent nucleation.
View Article and Find Full Text PDFOver the past decade, perovskite solar cells (PSCs) have attracted enormous attention due to their high performance. One key to fabricating high-quality perovskite films lies in controlling the volatilization rate of residual solvents during the annealing process. This study systematically investigates how different protective substrates affect the volatilization rate of residual solvent in perovskite films.
View Article and Find Full Text PDFPerovskite solar cells (PSCs) have attracted unprecedented attention due to their rapidly rising photoelectric conversion efficiency (PCE). In order to further improve the PCE of PSCs, new possible optimization path needs to be found. Here, quasi-heteroface PSCs (QHF-PSCs) is designed by a double-layer perovskite film.
View Article and Find Full Text PDFAn electron-transport layer (ETL) with appropriate energy alignment and enhanced charge transfer is critical for perovskite solar cells (PSCs). However, interfacial energy level mismatch limits the electrical performance of PSCs, particularly the open-circuit voltage (V ). Herein, a simple low-temperature-processed In O /SnO bilayer ETL is developed and used for fabricating a new PSC device.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2019
The elaborate control of the surface morphologies and trap states of solution-processed perovskite films significantly governs the photovoltaic performance and moisture resistance of perovskite solar cells (PSCs). Herein, a thin layer of poly(triaryl amine) (PTAA) was unprecedentedly devised on top of perovskite quasi-film by spin-coating PTAA/chlorobenzene solution before annealing the perovskite film. This treatment induced a smooth and compact perovskite layer with passivated surface defects and grain boundaries, which result in a significantly reduced charge recombination.
View Article and Find Full Text PDFWe report a small molecule tandem organic photovoltaic (OPV) cell with a high power conversion efficiency (PCE) of 7.27%. This cell contains two subcells with an identical mixed active layer of C70:5 wt%TAPC (1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane).
View Article and Find Full Text PDFExciplex is well known as a charge transfer state formed between electron-donating and electron-accepting molecules. However, exciplex based organic light emitting diodes (OLED) often performed low efficiencies relative to pure phosphorescent OLED and could hardly be used to construct white OLED (WOLED). In this work, a new mechanism is developed to realize efficient WOLED with extremely simple structure by redistributing the energy of triplet exciplex to both singlet exciplex and the orange dopant.
View Article and Find Full Text PDFUnlabelled: A solution processed MoO3/PEDOT:PSS bilayer structure is used as the hole transporting layer to improve the efficiency and stability of planar heterojunction perovskite solar cells. Increased hole extraction efficiency and restrained erosion of ITO by
Pedot: PSS are demonstrated in the optimized device due to the incorporation of an MoO3 layer.
ACS Appl Mater Interfaces
February 2015
High-performance panchromatic organic photodetectors (OPDs) containing small molecules lead phthalocyanine (PbPc) and C70 fullerene as donor and acceptor, respectively, were demonstrated. The OPDs had either a PbPc/C70 planar heterojunction (PHJ) or a PbPc/PbPc:C70/C70 hybrid planar-mixed molecular heterojunction (PM-HJ) structure. Both the PHJ and the PM-HJ devices showed a broad-band response that covered wavelengths from 300 to 1100 nm.
View Article and Find Full Text PDF