The observation of quantum criticality in diverse classes of strongly correlated electron systems has been instrumental in establishing ordering principles, discovering new phases, and identifying the relevant degrees of freedom and interactions. At focus so far have been insulators and metals. Semimetals, which are of great current interest as candidate phases with nontrivial topology, are much less explored in experiments.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2020
The crystal structure of a new superconductor UTe has been investigated using single-crystal neutron diffraction for the first time at the low temperature (LT) of 2.7 K, just above the superconducting transition temperature of ∼1.6 K, in order to clarify whether the orthorhombic structure of type Immm (No.
View Article and Find Full Text PDFLow-temperature electrical and thermal transport, magnetic penetration depth, and heat capacity measurements were performed on single crystals of the actinide superconductor UTe to determine the structure of the superconducting energy gap. Heat transport measurements performed with currents directed along both crystallographic and axes reveal a vanishingly small residual fermionic component of the thermal conductivity. The magnetic field dependence of the residual term follows a rapid, quasilinear increase consistent with the presence of nodal quasiparticles, rising toward the -axis upper critical field where the Wiedemann-Franz law is recovered.
View Article and Find Full Text PDFBy means of new muon spin relaxation experiments, we disentangle extrinsic and intrinsic sources of low-temperature bulk magnetism in the candidate topological Kondo insulator (TKI) SmB_{6}. Results on Al-flux-grown SmB_{6} single crystals are compared to those on a large floating-zone-grown ^{154}Sm ^{11}B_{6} single crystal in which a 14 meV bulk spin exciton has been detected by inelastic neutron scattering. Below ∼10 K, we detect the gradual development of quasistatic magnetism due to rare-earth impurities and Sm vacancies.
View Article and Find Full Text PDFApplied magnetic fields underlie exotic quantum states, such as the fractional quantum Hall effect and Bose-Einstein condensation of spin excitations. Superconductivity, however, is inherently antagonistic towards magnetic fields. Only in rare cases can these effects be mitigated over limited fields, leading to re-entrant superconductivity.
View Article and Find Full Text PDFSamarium hexaboride (SmB) is a Kondo insulator, with a narrow gap due to hybridization between localized and conduction electrons. Despite being an insulator, many samples show metal-like properties. Rare-earth purification is exceedingly difficult, and nominally pure samples may contain 2% or more of impurities.
View Article and Find Full Text PDFUsing inelastic neutron scattering, we map a 14 meV coherent resonant mode in the topological Kondo insulator SmB6 and describe its relation to the low energy insulating band structure. The resonant intensity is confined to the X and R high symmetry points, repeating outside the first Brillouin zone and dispersing less than 2 meV, with a 5d-like magnetic form factor. We present a slave-boson treatment of the Anderson Hamiltonian with a third neighbor dominated hybridized band structure.
View Article and Find Full Text PDFInelastic neutron scattering at low temperatures T≤30 K from a powder of LiZn2Mo3O8 demonstrates this triangular-lattice antiferromagnet hosts collective magnetic excitations from spin-1/2 Mo3O13 molecules. Apparently gapless (Δ<0.2 meV) and extending at least up to 2.
View Article and Find Full Text PDFEndogenous creatinine, inulin, para-amino-hippurate and phenolsulphothalein clearances for healthy cats are presented. The values for inulin and para-aminohippurate clearances (ml/kg/min) are similar to those for the dog. Creatinine clearance was less than inulin clearance values.
View Article and Find Full Text PDF