ACS Appl Mater Interfaces
May 2021
Development of a functional sorbent for effective crude oil absorption is essential to address large-scale spilling incidents. Herein, we demonstrate a facile method for preparing a superhydrophobic and photothermal PDMS/CuS/PDA@MF sponge through sequential depositions of PDA, CuS nanoparticles, and a PDMS layer onto a melamine sponge. The optimized composite sponge exhibits a superhydrophobic surface property, high absorption capacity for oils, robust recycling, and excellent photothermal conversion performance.
View Article and Find Full Text PDFA generalizable approach for improving the stability of polylactide-based (PLA-based) micelles for encapsulating nanoparticles (NPs) is demonstrated, using stereocomplexation between a pair of poly (ethylene glycol)--poly(d-lactide)/poly(ethylene glycol)--poly(l-lactide) block copolymer blends. Three different superparamagnetic ferrite-based NPs with distinct nanostructures are first prepared by the high-temperature pyrolysis method, including spherical MnFeO, cubic MnFeO, and core-shell MnFeO@FeO. The diameters of these NPs are approximately 7-10 nm as revealed by transmission electron microscopy.
View Article and Find Full Text PDFThe production and utilization of polymers have been widely implemented into diverse applications that benefit modern human society, but one of the most valuable properties of polymers, durability, has posed a long-standing environmental challenge from its inception since plastic waste can lead to significant contamination and remains in landfills and oceans for at least hundreds of years. Poly(lactic acid) (PLA) derived from renewable resources provides a sustainable alternative to traditional polymers due to its advantages of comparable mechanical properties with common plastics and biodegradability. However, the poor thermal and hydrolytic stability of PLA-based materials limit their potential for durable applications.
View Article and Find Full Text PDF