Publications by authors named "Fuhai Su"

Quantitative nuclear magnetic resonance (qNMR) has a potential risk of inaccurate quantification of complex organic compounds with low purity due to incomplete separation of the impurity signals and the target component signals. The high performance liquid chromatography-qNMR (HPLC-qNMR) method removes impurities from the sample by HPLC and accurately determines the purity of the sample by qNMR, avoiding the laborious, time-consuming, and costly step of qualitative and quantitative determination of impurities in conventional mass balance methods. An improved method, named post-collection purity correction for internal standard correction-HPLC-qNMR (ISC-HPLC-qNMR), was developed and demonstrated on a complex compound oxytetracycline with low purity.

View Article and Find Full Text PDF

Pentagonal palladium diselenide (PdSe) stands out for its exceptional optoelectronic properties, including high carrier mobility, tunable bandgap, and anisotropic electronic and optical responses. Herein, we systematically investigate photocarrier dynamics in PdSe ribbons using polarization-resolved optical pump-probe spectroscopy. In thin PdSe ribbons with a semiconductor phase, the photocarrier dynamics are found to be dominated by intraband hot-carrier cooling, interband recombination, and the exciton effect, showing weak crystalline orientation dependences.

View Article and Find Full Text PDF

VO, which exhibits semiconductor-metal phase transition characteristics occurring on a picosecond time scale, holds great promise for ultrafast terahertz modulation in next-generation communication. However, as of now, there is no reported prototype for an ultrafast device. The temperature effect has been proposed as one of the major obstacles.

View Article and Find Full Text PDF

MnBi2Te4 can generate a variety of exotic topological quantum states, which are closely related to its special structure. We conduct comprehensive multiple-cycle high-pressure research on MnBi2Te4 by using a diamond anvil cell to study its phase transition behaviors under high pressure. As observed, when the pressure does not exceed 15 GPa, the material undergoes an irreversible metal-semiconductor-metal transition, whereas when the pressure exceeds 17 GPa, the layered structure is damaged and becomes irreversibly amorphous due to the lattice distortion caused by compression, but it is not completely amorphous, which presents some nano-sized grains after decompression.

View Article and Find Full Text PDF

The transport properties of charge carriers in MXene, a promising material, have been studied using terahertz time-domain spectroscopy (THz-TDS) to examine its potential applications in optical and electronic devices. However, previous studies have been limited by narrow frequency ranges, which have hindered the understanding of the intrinsic mechanisms of carrier transport in MXenes. To address this issue, ultrabroadband THz-TDS with frequencies of up to 15 THz to investigate the complex photoconductances of MXene (TiCT) films with different thicknesses are employed.

View Article and Find Full Text PDF

Maximizing hole-transfer kinetics-usually a rate-determining step in semiconductor-based artificial photosynthesis-is pivotal for simultaneously enabling high-efficiency solar hydrogen production and hole utilization. However, this remains elusive yet as efforts are largely focused on optimizing the electron-involved half-reactions only by empirically employing sacrificial electron donors (SEDs) to consume the wasted holes. Using high-quality ZnSe quantum wires as models, we show that how hole-transfer processes in different SEDs affect their photocatalytic performances.

View Article and Find Full Text PDF

Understanding the coupling between electrons and phonons in iron chalcogenides FeTexSe1-x has remained a critical but arduous project in recent decades. The direct observation of the electron-phonon coupling effect through electron dynamics and vibrational properties has been lacking. Here, we report the first pressure-dependent ultrafast photocarrier dynamics and Raman scattering studies on an iron chalcogenide FeTe0.

View Article and Find Full Text PDF

Facilitating charge separation and transport of semiconductors is pivotal to improving their solar-to-hydrogen conversion efficiency. To this end, manipulating the charge dynamics via element doping has attracted much attentions. Here, we doped phosphorus (P) into two-dimensional (2D) single-crystalline quaternary sulfide (SCQS) nanobelts, enabling significantly enhanced photocatalytic H production.

View Article and Find Full Text PDF

A systemic investigation of the terahertz (THz) transmission of LaCaMnO film on the (001)-oriented NdGaO substrate under external magnetic field and low temperature have been performed. The significant THz absorption difference between the out-of-plane and the in-plane magnetic field direction is observed, which is consistent with the electrical transport measurement using the standard four-probe technique. Furthermore, we find that the complex THz conductivities can be reproduced in terms of the Drude Smith equation as the magnetic field is perpendicular to the film plane, whereas it deviates from this model when the in-plane magnetic field is applied.

View Article and Find Full Text PDF

Van der Waals heterostructures composed of different two-dimensional films offer a unique platform for engineering and promoting photoelectric performances, which highly demands the understanding of photocarrier dynamics. Herein, large-scale vertically stacked heterostructures with MoS and ReSe monolayers are fabricated. Correspondingly, the carrier dynamics have been thoroughly investigated using different ultrafast spectroscopies, including Terahertz (THz) emission spectroscopy, time-resolved THz spectroscopy (TRTS), and near-infrared optical pump-probe spectroscopy (OPPS), providing complementary dynamic information for the out-of-plane charge separation and in-plane charge transport at different stages.

View Article and Find Full Text PDF

Pressure effects on photocarrier dynamics such as interband relaxations and intraband cooling in GaAs have been investigated using in situ time-resolved terahertz spectroscopy with a diamond anvil cell. The interband photocarrier lifetime significantly decreases by nearly two orders of magnitude as the external hydrostatic pressure is increased up to 10 GPa. Considerable pressure tuning for the intervalley scattering processes has also been observed, and the time constants under different pressures are extracted based on the three-state rate model.

View Article and Find Full Text PDF

We perform femtosecond pump-probe spectroscopy to in situ investigate the ultrafast photocarrier dynamics in bilayer graphene and observe an acceleration of energy relaxation under pressure. In combination with in situ Raman spectroscopy and ab initio molecular dynamics simulations, we reveal that interlayer shear and breathing modes have significant contributions to the faster hot-carrier relaxations by coupling with the in-plane vibration modes under pressure. Our work suggests that further understanding the effect of interlayer interaction on the behaviors of electrons and phonons would be critical to tailor the photocarrier dynamic properties of bilayer graphene.

View Article and Find Full Text PDF

The chemical nature of the organic cations governs the optoelectronic properties of two-dimensional organic-inorganic perovskites. But its mechanism is not fully understood. Here, we apply femtosecond broadband sum frequency generation vibrational spectroscopy to investigate the molecular conformation of spacer organic cations in two-dimensional organic-inorganic perovskite films and establish a correlation among the conformation of the organic cations, the charge carrier mobility, and broadband emission.

View Article and Find Full Text PDF

Due to the widespread use of synthetic peptide drugs, their quantification and the analysis of impurities have become increasingly important in clinical and medical settings. Moreover, quantifying proteins using synthetic peptides as internal or external standards is a general approach, and the key to this approach is the knowing purities of the peptides. In this paper, synthetic glucagon was quantified using a mass balance method.

View Article and Find Full Text PDF

The frequency and time resolved conductivity in a photoexcited large-area monolayer tungsten disulfide (WS) have been simultaneously determined by using time-resolved terahertz spectroscopy. We use the Drude-Smith model to successfully reproduce the transient photoconductivity spectra, which demonstrate that localized free carriers, not bounded excitons, are responsible for the THz transport. Upon the optical excitation with 400 nm and 530 nm wavelength, the relaxation dynamics of the free carriers include fast and slow decay components with time constants approximately smaller than 1 ps and between 5-7 ps, respectively.

View Article and Find Full Text PDF

Diatomic nitrogen is an archetypal molecular system known for its exceptional stability and complex behavior at high pressures and temperatures, including rich solid polymorphism, formation of energetic states, and an insulator-to-metal transformation coupled to a change in chemical bonding. However, the thermobaric conditions of the fluid molecular-polymer phase boundary and associated metallization have not been experimentally established. Here, by applying dynamic laser heating of compressed nitrogen and using fast optical spectroscopy to study electronic properties, we observe a transformation from insulating (molecular) to conducting dense fluid nitrogen at temperatures that decrease with pressure and establish that metallization, and presumably fluid polymerization, occurs above 125 GPa at 2500 K.

View Article and Find Full Text PDF

Terahertz (THz) time domain spectroscopy (THz-TDS) of a CoCr₂O₄ single crystal has been performed under magnetic fields up to 8 Tesla. The magnetic field dependences of inter-sublattice exchange resonance at different temperatures have been investigated. Benefiting from the phase and polarization sensitive detection technique in THz-TDS, the circular absorption dichroism and Faraday ellipticity in the THz frequency region are observed and are found to be tunable by the external magnetic field.

View Article and Find Full Text PDF

We use ultrafast phase-contrast imaging to directly observethe cone-like terahertz (THz) Cherenkov wave generated by optical rectification of femtosecond laser pulses focused into bulk lithium niobate (LiNbO₃) single crystals. The transverse imaging geometry allows the Cherenkov angle, THz wave velocity, and optical pump pulse group velocity to be measured. Furthermore, transition-like THz radiation generated by the femtosecond laser pulse at the air-crystal boundary is observed.

View Article and Find Full Text PDF

Terahertz (THz) time-domain spectroscopy is carried out for micro/nanostructured periodic Au/dielectric sphere arrays on Si substrate. We find that the metal-insulator transition can be achieved in THz bandwidth via varying sample parameters such as the thickness of the Au shell and the diameter of the Au/dielectric sphere. The Au/polystyrene sphere arrays do not show metallic THz response when the Au shell thickness is larger than 10 nm and the sphere diameter is smaller than 500 nm.

View Article and Find Full Text PDF

The two-color optical coherence absorption spectrum (QUIC-AB) of semiconductors in the presence of a charge current is investigated. We find that the QUIC-AB depends strongly not only on the amplitude of the electron current but also on the direction of the electron current. Thus, the amplitude and the angular distribution of current in semiconductors can be detected directly in real time with the QUIC-AB.

View Article and Find Full Text PDF

Background: The need for certified reference materials (CRM) of anabolic-androgenic steroids reference materials was emphasized by the Beijing 2008 Olympic game as a tool to improve comparability, ensuring accuracy and traceability of analytical results for competing athletes. The China National Institute of Metrology (NIM) responded to the state request by providing seven anabolic-androgenic steroids (AAS) reference materials for Beijing Olympic anti-doping, GBW (E) 100086-GBW (E) 100092.

Experimental: This work describes the production of the series of AAS CRMs, according to ISO Guides 34 and 35 [1,2], which comprises the material processing, homogeneity and stability assessment, CRMs' characterization including moisture content, trace metal content.

View Article and Find Full Text PDF

A highly accurate method for measuring pentachlorophenol (PCP) concentrations in textile samples was developed. This highly accurate method for the analysis of textile samples is valuable, given the inherent challenges associated with the complexity of the sample matrix. This method can be applied to certify the concentration of pentachlorophenol in textile CRMs.

View Article and Find Full Text PDF

Synthetic core-shell molecularly imprinted polymers (MIPs) were prepared for the extraction of trace triclosan in environmental water samples. The synthesis process combined a surface molecular imprinting technique with a sol-gel process based on carbon nanotubes (CNTs) coated with silica. The morphology and structure of the products were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

A high order method for measuring urea concentrations in milk and milk powder was developed. The method can be applied to certify the concentration of urea in some new milk and milk powder CRMs. This high accurate method for analysis of milk is valuable given the inherent challenges associated with the complexity of the sample matrix.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: