Background: Stroke is the second leading cause of mortality and disability worldwide. Poststroke rehabilitation is still unsatisfactory in clinics, which brings great pain and economic burdens to stroke patients. In this study, an injectable hydrogel in which tannic acid (TA) acts as not only a building block but also a therapeutic drug, was developed for poststroke rehabilitation.
View Article and Find Full Text PDFNerve regeneration and repair still remain a huge challenge for both central nervous and peripheral nervous system. Although some therapeutic substances, including neuroprotective agents, clinical drugs and stem cells, as well as various growth factors, are found to be effective to promote nerve repair, a carrier system that possesses a sustainable release behavior, in order to ensure high on-site concentration during the whole repair and regeneration process, and high bioavailability is still highly desirable. Hydrogel, as an ideal delivery system, has an excellent loading capacity and sustainable release behavior, as well as tunable physical and chemical properties to adapt to various biomedical scenarios; thus, it is thought to be a suitable carrier system for nerve repair.
View Article and Find Full Text PDFNLRP3 inflammasome-mediated pyroptosis is a proinflammatory programmed cell death pathway, which plays a vital role in functional outcomes after stroke. We previously described the beneficial effects of curcumin against stroke-induced neuronal damage through modulating microglial polarization. However, the impact of curcumin on microglial pyroptosis remains unknown.
View Article and Find Full Text PDFMicroglial polarization mediated neuroinflammation plays an important role in the pathological process of stroke. The aim of this study is to determine whether baicalein indirectly ameliorates neuronal injury through modulating microglial polarization after stroke and if so, then by what mechanism. The effects of baicalein on microglial polarization were revealed through the middle cerebral artery occlusion mouse model (MCAO, n = 6), the lipopolysaccharide (LPS) + interferon-γ (IFN-γ) and oxygen-glucose deprivation (OGD) induced neuroinflammatory microglia model (BV2, n = 3), respectively.
View Article and Find Full Text PDFStroke is one of the leading causes of death and disability worldwide with limited therapeutic options. Melatonin can attenuate ischemic brain damage with improved functional outcomes. However, the cellular mechanisms of melatonin-driven neuroprotection against post-stroke neuronal death remain unknown.
View Article and Find Full Text PDFAims: Microglia and infiltrated macrophages play important roles in inflammatory processes after ischemic stroke. Modulating microglia/macrophage polarization from pro-inflammatory phenotype to anti-inflammatory state has been suggested as a potential therapeutic approach in the treatment of ischemic stroke. Melatonin has been shown to be neuroprotective in experimental stroke models.
View Article and Find Full Text PDFZhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
March 2014