In this paper, a blue fluorescent organic light-emitting diode (OLED) with a 1 cm emitting area was fabricated by a solution process. The ITO/spin MADN:13% UBD-07/TPBi/Al was used as the basic structure in which to add a hole-injection layer PEDOT:PSS and an electron-injection layer LiF, respectively. The device structure was optimized to obtain a longer lifetime.
View Article and Find Full Text PDFThe derivative of C60, i.e., PCBM, and P3HT (3-hexylthiophene) were dissolved in chloroform:dichlorobenzene mixed solvent, then spin-coated as the active layer for organic solar cells (OSC).
View Article and Find Full Text PDFJ Nanosci Nanotechnol
October 2008
This paper presents a black film with double period metal-organic cathode structure for reducing the cathode reflection and enhancing the contrast ratio (CR) in organic light emitting diodes (OLEDs). The absorption and destructive interference effect caused by the copper-phthalocyanine (CuPc) and ultra thin aluminum (Al) periodic layers decrease the ambient light. The double-period black film structure (Al/CuPc/Al/CuPc/Al) has the lowest reflected luminance of 2.
View Article and Find Full Text PDFThe multilayer contact structures in both the anode and organic layers for top-emission organic light emitting diodes (TEOLEDs) are studied in this paper. The anode consists of aluminum/gold (Al/Au). The Al is used for high reflectivity and Au for high work function by enhancing the hole injection from the anode into the organic hole injection layer.
View Article and Find Full Text PDF