Bispecific antibodies have gained increasing popularity as therapeutics as they enable novel activities that cannot be achieved with monospecific antibodies. Some of the most popular bispecific formats are molecules in which two Fab arms with different antigen specificities are combined into one IgG-like molecule. One way to produce these bispecific molecules requires the discovery of antibodies against the two antigens of interest that share a common light chain.
View Article and Find Full Text PDFTransl Vis Sci Technol
October 2022
Purpose: Diabetic macular edema (DME) is the leading cause of vision loss and blindness among working-age adults. Although current intravitreal anti-vascular endothelial growth factor (VEGF) therapies improve vision for many patients with DME, approximately half do not achieve the visual acuity required to drive. We therefore sought additional approaches to resolve edema and improve vision for these patients.
View Article and Find Full Text PDFA phage-derived human monoclonal antibody against VEGF-C was developed as a potential anti-tumor therapeutic and exhibited fast clearance in preclinical species, with notably faster clearance in serum than in plasma. The purpose of this work was to understand the factors contributing to its fast clearance. In vitro incubations in animal and human blood, plasma, and serum were conducted with radiolabeled anti-VEGF-C to determine potential protein and cell-based interactions with the antibody as well as any matrix-dependent recovery dependent upon the matrix.
View Article and Find Full Text PDFPurpose: Investigate a significant, dose-related increase in IOP, leading to glaucomatous damage to the neuroretina and optic nerve following intravitreal (ITV) administration of a bispecific F(ab')2 [anti-VEGF/Angiopoietins [ANGPT]F(ab')2] molecule in adult monkeys.
Methods: ITV ocular tolerability and investigation of anti-VEGF/ANGPT F(ab')2 (blocking both ANGPT1 and ANGPT2) was done in monkeys; mechanistic studies were done in neonatal mice.
Results: Following the second ITV dose of anti-VEGF/ANGPT F(ab')2, all 1.
Paclobutrazol, (2RS, 3RS)-1-(4-chlorophenyl)-4, 4-dimethyl-2-(1H-1,2,4-triazol-1-yl) pentan-3-ol, is a plant growth retardant that mainly inhibits gibberellins (GAs) biosynthesis. In agricultural practice, paclobutrazol is applied to arrest vegetative growth so as to increase the reproductive growth of many orchard fruit, as well as grain crops. However, due to its over-application and chemical stability, paclobutrazol accumulates in soil and inhibits the growth of subsequent crops, especially those grown for vegetative purposes.
View Article and Find Full Text PDFMonoclonal antibodies developed for therapeutic or diagnostic purposes need to demonstrate highly defined binding specificity profiles. Engineering of an antibody to enhance or reduce binding to related antigens is often needed to achieve the desired biologic activity without safety concern. Here, we describe a deep sequencing-aided engineering strategy to fine-tune the specificity of an angiopoietin-2 (Ang2)/vascular endothelial growth factor (VEGF) dual action Fab, 5A12.
View Article and Find Full Text PDFSomatic mutations within the antibody variable domains are critical to the immense capacity of the immune repertoire. Here, via a deep mutational scan, we dissect how mutations at all positions of the variable domains of a high-affinity anti-VEGF antibody G6.31 impact its antigen-binding function.
View Article and Find Full Text PDFAccumulation of amyloid-β (Aβ) peptides and amyloid plaque deposition in brain is postulated as a cause of Alzheimer's disease (AD). The precise pathological species of Aβ remains elusive although evidence suggests soluble oligomers may be primarily responsible for neurotoxicity. Crenezumab is a humanized anti-Aβ monoclonal IgG4 that binds multiple forms of Aβ, with higher affinity for aggregated forms, and that blocks Aβ aggregation, and promotes disaggregation.
View Article and Find Full Text PDFCerebral cavernous malformations (CCMs) are vascular malformations that affect the central nervous system and result in cerebral hemorrhage, seizure and stroke. CCMs arise from loss-of-function mutations in one of three genes: KRIT1 (also known as CCM1), CCM2 or PDCD10 (also known as CCM3). PDCD10 mutations in humans often result in a more severe form of the disease relative to mutations in the other two CCM genes, and PDCD10-knockout mice show severe defects, the mechanistic basis for which is unclear.
View Article and Find Full Text PDFPurpose: To design and select the next generation of ocular therapeutics, we performed a comprehensive ocular and systemic pharmacokinetic (PK) analysis of a variety of antibodies and antibody fragments, including a novel-designed bispecific antibody.
Methods: Molecules were administrated via intravitreal (IVT) or intravenous (IV) injections in rabbits, and antibody concentrations in each tissue were determined by ELISA. A novel mathematical model was developed to quantitate the structure-PK relationship.
The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites.
View Article and Find Full Text PDFThe objectives of this study were to evaluate the relative binding and potencies of three inhibitors of vascular endothelial growth factor A (VEGF), used to treat neovascular age-related macular degeneration, and assess their relevance in the context of clinical outcome. Ranibizumab is a 48 kDa antigen binding fragment, which lacks a fragment crystallizable (Fc) region and is rapidly cleared from systemic circulation. Aflibercept, a 110 kDa fusion protein, and bevacizumab, a 150 kDa monoclonal antibody, each contain an Fc region.
View Article and Find Full Text PDFDeciphering metastatic routes is critically important as metastasis is a primary cause of cancer mortality. In colorectal cancer (CRC), it is unknown whether liver metastases derive from cancer cells that first colonize intestinal lymph nodes, or whether such metastases can form without prior lymph node involvement. A lack of relevant metastatic CRC models has precluded investigations into metastatic routes.
View Article and Find Full Text PDFA mono-specific antibody may recruit a second antigen binding specificity, thus converting to a dual-specific Two-in-One antibody through mutation at the light chain complementarity-determining regions (CDRs). It is, however, unknown whether mutation at the heavy chain CDRs may evolve such dual specificity. Herein, we examined the CDRs of a humanized interleukin 4 (IL4) antibody using alanine scanning and structural modeling, designed libraries of mutants in regions that tolerate mutation, and isolated dual specific antibodies harboring mutation at the heavy chain CDRs only.
View Article and Find Full Text PDFPhage display is a powerful tool to isolate specific binders from a large and diverse combinatorial library. Here we provide a step-by-step protocol in how to set up a successful phage panning experiment in order to isolate useful antibodies. The protocol includes testing antigens for their suitability in the phage panning procedure and optimizing the panning conditions and alternative screening methods to minimize nonspecific binding.
View Article and Find Full Text PDFTumor-associated lymphatics are postulated to provide a transit route for disseminating metastatic cells. This notion is supported by preclinical findings that inhibition of pro-lymphangiogenic signaling during tumor development reduces cell spread to sentinel lymph nodes (SLNs). However, it is unclear how lymphatics downstream of SLNs contribute to metastatic spread into distal organs, or if modulating distal lymph transport impacts disease progression.
View Article and Find Full Text PDFMechanisms and biological roles of antibody multi-specificity are topics of high interest. Evidence of conformational flexibility in antigen-combining sites and their utility in the recognition of different antigens appeared two decades ago. In the last three years an appreciation has emerged that recognition of very much more diverse protein antigens is within the scope of multi-specificity and also that this is sometimes, but not always, associated with structural plasticity.
View Article and Find Full Text PDFAttempts to express eukaryotic multi-spanning membrane proteins at high-levels have been generally unsuccessful. In order to investigate the cause of this limitation and gain insight into the rate limiting processes involved, we have analyzed the effect of translation levels on the expression of several human membrane proteins in Escherichia coli (E. coli).
View Article and Find Full Text PDFExtensive crosstalk among ErbB/HER receptors suggests that blocking signaling from more than one family member may be essential to effectively treat cancer and limit drug resistance. We generated a conventional IgG molecule MEHD7945A with dual HER3/EGFR specificity by phage display engineering and used structural and mutational studies to understand how a single antigen recognition surface binds two epitopes with high affinity. As a human IgG1, MEHD7945A exhibited dual action by inhibiting EGFR- and HER3-mediated signaling in vitro and in vivo and the ability to engage immune effector functions.
View Article and Find Full Text PDFThe antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2) antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF) to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called "structural plasticity". Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens.
View Article and Find Full Text PDFPurpose: Inhibition of the vascular endothelial growth factor (VEGF) axis is the basis of all currently approved antiangiogenic therapies. In preclinical models, anti-VEGF blocking antibodies have shown broad efficacy that is dependent on both tumor context and treatment duration. We aimed to characterize this activity and to evaluate the effects of discontinuation of treatment on the dynamics of tumor regrowth.
View Article and Find Full Text PDFThe low rate of approval of novel anti-cancer agents underscores the need for better preclinical models of therapeutic response as neither xenografts nor early-generation genetically engineered mouse models (GEMMs) reliably predict human clinical outcomes. Whereas recent, sporadic GEMMs emulate many aspects of their human disease counterpart more closely, their ability to predict clinical therapeutic responses has never been tested systematically. We evaluated the utility of two state-of-the-art, mutant Kras-driven GEMMs--one of non-small-cell lung carcinoma and another of pancreatic adenocarcinoma--by assessing responses to existing standard-of-care chemotherapeutics, and subsequently in combination with EGFR and VEGF inhibitors.
View Article and Find Full Text PDF