Publications by authors named "Fugui Fang"

Previous studies have confirmed that methylation regulates gene transcription in the hypothalamus-pituitary-gonadal axis during puberty initiation, but little is known about the regulation of DNA methylation on gene expression in the pineal gland. To screen pineal gland candidate genes related to the onset of goat puberty and regulated by genome methylation, we collected pineal glands from prepubertal and pubertal female goats, then, determined the DNA methylation profile by whole genome bisulfite sequencing and the transcriptome by RNA sequencing on Illumina HiSeqTM2500. We analyzed differentially expressed genes between the Pre group and Pub group using the DESeq2 software (version 1.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) vaccines have been widely used to effectively inhibit gonadal development and reproductive function. To improve the immunogenicity of GnRH, we developed and evaluated the effects of GnRH6-kisspeptin-CRM197 immunization on the reproductive function in male goats. Thirty 3-month-old male goats (n = 30) were randomly assigned to control, surgical, and immunized groups.

View Article and Find Full Text PDF

This study examines the role of N-acetylglucosamine kinase (NAGK) in initiating puberty in female mice. We employed real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunofluorescence to measure NAGK expression in the hypothalamic-pituitary-ovarian axis across various developmental stages: infant, prepuberty, puberty, and adult. We further investigated the impact of Nagk gene knockdown on puberty in female mice.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) vaccines have been successfully used for the inhibition of gonadal development and function, but current GnRH-based vaccines often present variability in the response. Cross-reactive material 197 (CRM197) has been used as carrier molecules to enhance an immune response to associated antigens. So, the synthetic mammalian tandem-repeated GnRH hexamer (GnRH6) gene was integrated into the expression plasmid pET-21a.

View Article and Find Full Text PDF

Puberty is considered a prerequisite for affecting reproductive performance and productivity. Little was known about molecular changes in pubertal goat ovaries. Therefore, we measured and performed a correlation analysis of the mRNA and proteins changes in the pre-pubertal and pubertal goat ovaries.

View Article and Find Full Text PDF

Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) play key roles in regulating testosterone secretion and spermatogenesis in male mammals, respectively, and they maintain the fertility of male animals by binding to their corresponding receptors. We designed and prepared a recombinant LH receptor (LHR) subunit vaccine and a recombinant FSH receptor (FSHR) subunit vaccine and used male Sprague Dawley (SD) rats as a model to examine their effects on testicular development, spermatogenesis, and testosterone secretion in prepubertal and pubertal mammals. Both vaccines (LHR-DTT and FSHR-DTT) significantly decreased the serum testosterone level in prepubertal rats ( < 0.

View Article and Find Full Text PDF

The study aimed to investigate the effect of Grid1, encoding the glutamate ionotropic receptor delta type subunit 1 (GluD1), on puberty onset in female rats. Grid1 mRNA and protein expression was detected in the hypothalamus of female rats at prepuberty and puberty. The levels of Grid1 mRNA in the hypothalamus, the fluorescence intensity in the arcuate nucleus and paraventricular nucleus of the prepubertal rats was significantly lower than pubertal.

View Article and Find Full Text PDF

Prothioconazole (PTC), a novel broad-spectrum triazole fungicide, has attracted widespread concern due to its wide use and toxicological effects on non-target organisms. However, little is known about the impact of PTC on oocyte quality and female fertility, especially on oocyte maturation and fertilization. In the present study, we reported that PTC exposure affects the oocyte developmental competence and oocyte fertilization ability to weaken female fertility.

View Article and Find Full Text PDF

Copper oxides nanoparticles (CuO NPs) are widely used for a variety of industrial and life science applications. In addition to cause neurotoxicity, hepatotoxicity, immunotoxicity, CuO NPs have also been reported to adversely affect the reproductive system in animals; However, little is known about the effects and potential mechanism of CuO NPs exposure on oocyte quality, especially oocyte maturation. In the present study, we reported that CuO NPs exposure impairs the oocyte maturation by disrupting meiotic spindle assembly and chromosome alignment, as well as kinetochore-microtubule attachment.

View Article and Find Full Text PDF

Background: Pregnancy toxemia is a common disease, which occurs in older does that are pregnant with multiple lambs in the third trimester. Most of the sick goats die within a few days, which can seriously impact the economic benefits of goat breeding enterprises. The disease is believed to be caused by malnutrition, stress, and other factors, that lead to the disorder of lipid metabolism, resulting in increased ketone content, ketosis, ketonuria, and neurological symptoms.

View Article and Find Full Text PDF

Background: Puberty marks the end of childhood and achieve sexual maturation and fertility. The role of hypothalamic proteins in regulating puberty onset is unclear. We performed a comprehensive differential proteomics and phosphoproteomics analysis in prepubertal and pubertal goats to determine the roles of hypothalamic proteins and phosphoproteins during the onset of puberty.

View Article and Find Full Text PDF

Objective: The aim of this study was to reveal the role and regulatory mechanism of miR-188-5p in the proliferation and differentiation of goat muscle satellite cells.

Methods: Goat skeletal muscle satellite cells isolated in the pre-laboratory were used as the test material. First, the expression of miR-188-5p in goat muscle tissues at different developmental stages was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

This study investigated how lncRNA Meg3 affects the onset of puberty in female rats. We determined Meg3 expression in the hypothalamus-pituitary-ovary axis of female rats at the infancy, prepubertal, pubertal, and adult life stages, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). We also assessed the effects of Meg3 knockdown on the expression levels of puberty-related genes and Wnt/β-catenin proteins in the hypothalamus, time of puberty onset, levels of reproductive genes and hormones, and ovarian morphology in female rats.

View Article and Find Full Text PDF

The time of puberty onset is crucial for female animal, as it can affect the generation interval, feeding costs and the utilization of animals. However, little is known about the mechanism of hypothalamic lncRNAs (long noncoding RNAs) in regulatory goat puberty onset. Therefore, genome-wide transcriptome analysis was performed in goats to clarify the roles of hypothalamic lncRNAs and mRNAs in the onset of puberty.

View Article and Find Full Text PDF

Background: Age at puberty is an important factor affecting goat fertility, with endocrine and genetic factors playing a crucial role in the onset of puberty. To better understand the relationship between endocrine and genetic factors and mechanisms underlying puberty onset in goats, reproductive hormone levels were analyzed by ELISA and ultraperformance liquid chromatography-multiple reaction monitoring-multistage/mass spectrometry and RNA sequencing was performed to analyze ovarian genes.

Results: Serum follicle stimulating hormone, luteinizing hormone, estradiol, 11-deoxycortisol, 11-deoxycorticosterone, corticosterone, cortisone, and cortisol levels were found to be higher but progesterone were lower in pubertal goats as compared to those in prepubertal goats (P < 0.

View Article and Find Full Text PDF

The present study aimed to reveal the effects of immunocastration on the development of the immune system in rats. Seventy rats were randomly assigned into two groups: Control (n = 35) and immunized (n = 35). Twenty-day-old rats were immunized with gonadotropin-releasing hormone (GnRH) and booster immunization was administered every two weeks (three immunizations in total).

View Article and Find Full Text PDF

It is universally acknowledged that lncRNA plays an important role in the regulation of animal skeletal muscle development regulation. However, there is a lack of relevant research on lncRNA in rabbit skeletal muscle development. Thus, we explored the expression profiles of lncRNA in rabbits at three growth stages (2-week-old fetus, 6-week-old post-weaning, and 6-month-old adult) using RNA-seq.

View Article and Find Full Text PDF

Background: Changes in the abundance of ovarian proteins play a key role in the regulation of reproduction. However, to date, no studies have investigated such changes in pubescent goats. Herein we applied isobaric tags for relative and absolute quantitation (iTRAQ) and liquid chromatography-tandem mass spectrometry to analyze the expression levels of ovarian proteins in pre-pubertal (n = 3) and pubertal (n = 3) goats.

View Article and Find Full Text PDF

Insulin-like growth factor-binding protein-5 (IGFBP-5) has recently been shown to alter the reproductive capacity by regulating insulin-like growth factor (IGF) bioavailability or IGF-independent effects. The present study aimed to investigate the effect and mechanism of IGFBP-5 on the onset of puberty in female rats. Immunofluorescence and real-time quantitative PCR were used to determine the expression and location of IGFBP-5 mRNA and protein distribution in the infant's hypothalamus-pituitary-ovary (HPO) axis prepuberty, peripuberty, puberty and adult female rats.

View Article and Find Full Text PDF

Protein phosphorylation plays an important role in animal reproduction. However, its role in the onset of puberty in goats remains largely unexplored. Accordingly, in the present study, the molecular changes controlling the onset of puberty in goats were investigated by identifying the differentially phosphorylated proteins (DPPs) and phosphorylation sites (DPSs) in the hypothalami of prepubertal and pubertal female goats using LC-MS/MS and tandem mass tag labelling.

View Article and Find Full Text PDF

Spermatogonial stem cells (SSCs) provide a foundation for spermatogenesis, but the mechanism of SSC proliferation is still poorly understood. To investigate whether and how ascorbic acid (AA) regulates the growth of mouse SSCs in vitro, the SSCs were cultured in different concentration AA medium for 14 days. The proliferation, apoptosis and the reactive oxygen species (ROS) levels of SSCs in different AA groups were respectively detected.

View Article and Find Full Text PDF

The functions of proteins at the onset of puberty in goats remain largely unexplored. To identify the proteins regulating puberty in goats, we analysed protein abundance and pathways in the hypothalamus of female goats. We applied tandem mass tag (TMT) labelling, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and parallel reaction monitoring (PRM) to examine hypothalamus of pubertal (cases; n = 3) and prepubertal (controls; n = 3) goats.

View Article and Find Full Text PDF

In the present study, we evaluated how Ptprn-2 (encoding tyrosine phosphatase, receptor type, N2 polypeptide protein) affects the onset of puberty in female rats. We evaluated the expression of Ptprn-2 mRNA and protein in the hypothalamus-pituitary-ovary axis of female rats using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunofluorescence at infancy, prepuberty, puberty, peripuberty, and adulthood. We evaluated the effects of Ptprn-2 gene knockdown on different aspects of reproduction-related biology in female rats, including the expression levels of puberty-related genes in vivo and in vitro, the time to onset of puberty, the concentration of serum reproductive hormones, the morphology of ovaries, and the ultrastructure of pituitary gonadotropin cells.

View Article and Find Full Text PDF

Background: The temporal expression pattern of circular RNAs (circRNAs) across developmental stages is essential for skeletal muscle growth and functional analysis. However, there are few analyses on the potential functions of circRNAs in rabbit skeletal muscle development.

Results: Initially, the paraffin sections showed extremely significant differences in the diameter, number, area and density of skeletal muscle fibers of the fetus, child, adult rabbit hind legs (P < 0.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are key epigenomic regulators of proliferation, differentiation, and secretion in cells involved in follicular development. We here studied the functional role of one such molecule, miR-130a-3p, in goat ovarian granulosa cells (GCs). High expression of this miRNA was evident in goat GCs by fluorescence in situ hybridization and suppressed estradiol and progesterone secretion from these cells, as determined by ELISA.

View Article and Find Full Text PDF