The haloarchaeon synthesizes poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) under unfavorable nutritional conditions without the addition of any precursor to the culture, which is an advantage compared to other microbial counterparts able to synthesize polyhydroxyalkanoates (PHA). PHBV is a biodegradable polymer showing physiochemical properties of biotechnological and biomedical interest and can be used as an alternative to plastics made from chemical synthesis (which are not environmentally friendly). The versatile metabolism of makes the use of waste as a carbon source for cellular growth and PHA synthesis possible.
View Article and Find Full Text PDFis a haloarchaeon of high interest in biotechnology because it produces and mobilizes intracellular polyhydroxyalkanoate (PHA) granules during growth under stress conditions (limitation of phosphorous in the culture media), among other interesting metabolites (enzymes, carotenoids, etc.). The capability of PHA production by microbes can be monitored with the use of staining-based methods.
View Article and Find Full Text PDFIn this study, we have synthesized new double layered hydroxides to be incorporated to low density polyethylene thermoplastic matrix. These new composites present promising applications as materials to build greenhouses due to the enhancement of their optical properties. A characterization of the modified nanoclay has been performed by means of X-ray fluorescence (XRF), X-ray Diffraction (XRD), Thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDF