Astronomical precision spectroscopy underpins searches for life beyond Earth, direct observation of the expanding Universe and constraining the potential variability of physical constants on cosmological scales. Laser frequency combs can provide the required accurate and precise calibration to the astronomical spectrographs. For cosmological studies, extending the calibration with such astrocombs to the ultraviolet spectral range is desirable, however, strong material dispersion and large spectral separation from the established infrared laser oscillators have made this challenging.
View Article and Find Full Text PDFLaser frequency combs are enabling some of the most exciting scientific endeavours in the twenty-first century, ranging from the development of optical clocks to the calibration of the astronomical spectrographs used for discovering Earth-like exoplanets. Dissipative Kerr solitons generated in microresonators currently offer the prospect of attaining frequency combs in miniaturized systems by capitalizing on advances in photonic integration. Most of the applications based on soliton microcombs rely on tuning a continuous-wave laser into a longitudinal mode of a microresonator engineered to display anomalous dispersion.
View Article and Find Full Text PDFLithium niobate (LN) is a promising material for future complex photonic-electronic circuits, with wide applications in such fields as communications, sensing, quantum optics, and computation. LN took a great stride toward compact photonic integrated circuits (PICs) with the development of partially etched LN on insulator (LNOI) waveguides. However, integration density is still limited for future highly compact PICs, owing to the partial etching nature of their waveguides.
View Article and Find Full Text PDFOptical hyperparametric oscillation based on the third-order nonlinearity is one of the most significant mechanisms to generate coherent electromagnetic radiation and produce quantum states of light. Advances in dispersion-engineered high-Q microresonators allow for generating signal waves far from the pump and decrease the oscillation power threshold to submilliwatt levels. However, the pump-to-signal conversion efficiency and absolute signal power are low, fundamentally limited by parasitic mode competition and attainable cavity intrinsic Q to coupling Q ratio, i.
View Article and Find Full Text PDFMeasuring microcombs in amplitude and phase provides unique insight into the nonlinear cavity dynamics, but spectral phase measurements are experimentally challenging. Here, we report a linear heterodyne technique assisted by electro-optic downconversion that enables differential phase measurement of such spectra with unprecedented sensitivity (-50 dBm) and bandwidth coverage (>110 nm in the telecommunications range). We validate the technique with a series of measurements, including single-cavity and photonic molecule microcombs.
View Article and Find Full Text PDFSoliton microcombs provide a versatile platform for realizing fundamental studies and technological applications. To be utilized as frequency rulers for precision metrology, soliton microcombs must display broadband phase coherence, a parameter characterized by the optical phase or frequency noise of the comb lines and their corresponding optical linewidths. Here, we analyse the optical phase-noise dynamics in soliton microcombs generated in silicon nitride high-Q microresonators and show that, because of the Raman self-frequency shift or dispersive-wave recoil, the Lorentzian linewidth of some of the comb lines can, surprisingly, be narrower than that of the pump laser.
View Article and Find Full Text PDFSpectral broadening of optical frequency combs with high repetition rate is of significant interest in optical communications, radio-frequency photonics and spectroscopy. Silicon nitride waveguides (SiN) in the anomalous dispersion region have shown efficient supercontinuum generation spanning an octave-bandwidth. However, the broadening mechanism in this regime is usually attained with femtosecond pulses in order to maintain the coherence.
View Article and Find Full Text PDFThermal noise usually dominates the low-frequency region of the optical phase noise of soliton microcombs, which leads to decoherence that limits many aspects of applications. In this work, we demonstrate a simple and reliable way to mitigate this noise by laser cooling with a pump laser. The key is rendering the pump laser to simultaneously excite two neighboring cavity modes from different families that are respectively red and blue detuned, one for soliton generation and the other for laser cooling.
View Article and Find Full Text PDFCavity input-output relations (CIORs) describe a universal formalism relating each of the far-field amplitudes outside the cavity to the internal cavity fields. Conventionally, they are derived based on a weak-scattering approximation. In this context, the amplitude of the off-resonant field remains nearly unaffected by the cavity, with the high coupling efficiency into cavity modes being attributed to destructive interference between the transmitted (or reflected) field and the output field from the cavity.
View Article and Find Full Text PDFWe demonstrate the excitation and detection of whispering gallery modes in optical microresonators using a "point-and-play," fiber-based, optical nano-antenna. The coupling mechanism is based on cavity-enhanced Rayleigh scattering. Collected spectra exhibit Lorentzian dips, Fano shapes, or Lorentzian peaks, with a coupling efficiency around 13%.
View Article and Find Full Text PDFA pump source is one of the essential prerequisites in order to achieve lasing in a system, and, in most cases, a stronger pump leads to higher laser power at the output. However, this behavior may be suppressed if two pump beams are used. In this work, we show that lasing around the 1600 nm band can be suppressed completely if two pumps, at wavelengths of 980 nm and 1550 nm, are applied simultaneously to an Yb:Er-doped microlaser, whereas it can be revived by switching one of them off.
View Article and Find Full Text PDFA tunable, all-optical, coupling method is realised for a high-Q silica microsphere and an optical waveguide. By means of a novel optical nanopositioning method, induced thermal expansion of an asymmetric microsphere stem for laser powers up to 211 mW is observed and used to fine tune the microsphere-waveguide coupling. Microcavity displacements ranging from (0.
View Article and Find Full Text PDFIn this work, we show that the application of a sol-gel coating renders a microbubble whispering gallery resonator into an active device. During the fabrication of the resonator, a thin layer of erbium-doped sol-gel is applied to a tapered microcapillary, then a microbubble with a wall thickness of 1.3 μm is formed with the rare earth ions diffused into its wall.
View Article and Find Full Text PDFFabricating an optical microresonator with precise resonant wavelength is of significant importance for fundamental research and practical applications. Here, we develop an effective method to fabricate ultra-high Q microtoroid with picometer-precise resonant wavelength. Our method adds a tuning reflow process, using low-power CO laser pulses, to the traditional fabrication process.
View Article and Find Full Text PDFPrecise control of resonance features in microcavities is of significant importance both for researches and applications. By exploiting gain provided by the doped rare earth ions or Raman gain, this can be achieved through changing the pump. Here we propose and experimentally show that by using gain competition, one can also control the evolution of resonance for the probe signal while the pump is kept unchanged.
View Article and Find Full Text PDFWaveguide-coupled optical resonators have played an important role in a wide range of applications including optical communication, sensing, nonlinear optics, slow/fast light, and cavity QED. In such a system, the coupling regimes strongly affect the resonance feature in the light transmission spectra, and hence the performance and outcomes of the applications. Therefore it is crucial to control the coupling between the waveguide and the microresonator.
View Article and Find Full Text PDFRecently Qu and Agarwal [Phys. Rev. A 22, 031802 (2013)] found a three-pathway electromagnetically induced absorption (TEIA) phenomenon within a mechanically coupled two-cavity system, where there exist a sharp EIA dip in the broad electromagnetically induced transparency peak in the transmission spectrum.
View Article and Find Full Text PDF