Sensors (Basel)
February 2024
Railway catenary galloping, induced by aerodynamic instability, poses a significant threat by disrupting the electric current connection through sliding contact with the contact wire. This disruption leads to prolonged rail service interruptions and damage to the catenary's suspension components. This paper delves into the exploration of optimizing the catenary system's structure to alleviate galloping responses, addressing crucial parameters such as span length, stagger dropper distribution, and tension levels.
View Article and Find Full Text PDFThis study focuses on developing a comprehensive model of a rigid overhead system, which includes essential components such as the suspension structure, positioning clamp, and expansion joint. The modelling approach utilizes finite element theory and beam elements to accurately represent the displacement, stiffness, and mass characteristics of the system. The models also incorporate the suspension structure and positioning line clamp, which play crucial roles in suspending and positioning the busbar.
View Article and Find Full Text PDFThe vibration of the catenary that is initiated by the passing pantograph has a direct influence on the pantograph-catenary contact performance. Monitoring the dynamic uplift of the catenary can help inspectors to evaluate the railway operation conditions and investigate the mechanism of pantograph-catenary interaction further. In this paper, a non-contact measurement method based on the deep leaning method is proposed to monitor the real-time vibration of the catenary.
View Article and Find Full Text PDF