Poly(l-lactide--caprolactone) (PLCL, 50:50) has been used in cartilage tissue engineering because of its high elasticity. However, its mechanical properties, including its rigidity and viscoelasticity, must be improved for compatibility with native cartilage. In this study, a set of PLCL/poly(l-lactic acid) (PLLA) blends was prepared by blending with different mass ratios of PLLA that range from 10 to 50%, using thermoplastic techniques.
View Article and Find Full Text PDFThe lack of neo-cartilage integration with host tissues is a great challenge for the clinical translation of new technologies for the repair of articular cartilage (AC) defect. Recently, we developed a promising double-layered collagen-based system for targeted delivery of fibroblast growth factor 2 (FGF2) to the subchondral bone for AC repair. The system effectively promoted the regeneration of both cartilage and subchondral bone.
View Article and Find Full Text PDFUnlabelled: It is reported that growth factor (GF) is able to enhance the repair of articular cartilage (AC) defect, however underlying mechanisms of which are not fully elucidated yet. Moreover, the strategy for delivering GF needs to be optimized. The crosstalk between AC and subchondral bone (SB) play important role in the homeostasis and integrity of AC, therefore SB targeted delivery of GF represents one promising way to facilitate the repair of AC defect.
View Article and Find Full Text PDF