The fabricating of metal-organic frameworks (MOFs) that integrate high stability and functionality remains a long-term pursuit yet a great challenge. Herein, we develop a linker desymmetrization strategy to construct highly stable porphyrinic MOFs, namely, USTC-9 (USTC represents the University of Science and Technology of China), presenting the same topological structure as the well-known PCN-600 that readily loses crystallinity in air or upon conventional activation. For USTC-9, the involved porphyrinic linker (TmCPP-M) with carboxylate groups located in the meta-position presents a chair-shaped conformation with lower symmetry than that () of the common porphyrinic carboxylate (TCPP) linker in PCN-600.
View Article and Find Full Text PDFCombining different drugs into a single crystal form is one of the current challenges in crystal engineering, with the number of reported multi-drug solid forms remaining limited. This paper builds upon an efficient approach to combining Active Pharmaceutical Ingredients (APIs) containing carboxylic groups in their structure with APIs containing pyridine moieties. By transforming the former into their zinc salts, they can be successfully combined with the pyridine-containing APIs.
View Article and Find Full Text PDFCocrystallization is commonly used for its ability to improve the physical properties of APIs, such as solubility, bioavailability, compressibility, etc. The pharmaceutical industry is particularly interested in those cocrystals comprising a GRAS former in connection with the target API. In this work, we focus on the potential of urea as a cocrystal former, identifying three novel pharmaceutical cocrystal systems with catechin, 3-hydroxyl-2-naphthoic and ellagic acid.
View Article and Find Full Text PDF