Publications by authors named "Fucai Deng"

Nanoscale zero-valent iron (nZVI) is a prominent nanomaterial for the remediation of organochlorine-contaminated soil and groundwater. However, a knowledge gap regarding the effects of the coexistence of nZVI and pollutants on soil microorganisms remains. Here, we studied the effects of nZVI on the microbial community structure, co-occurrence network, and keystone taxa in pentachlorophenol (PCP, a typical organochlorine pesticide) contaminated soils.

View Article and Find Full Text PDF

A novel microbial consortium ZY1 capable of degrading tricresyl phosphates (TCPs) was isolated, it could quickly degrade 100% of 1 mg/L tri-o-cresyl phosphate (ToCP), tri-p-cresyl phosphate (TpCP) and tri-m-cresyl phosphate (TmCP) within 36, 24 and 12 h separately and intracellular enzymes occupied the dominated role in TCPs biodegradation. Additionally, triphenyl phosphate (TPHP), 2-ethylhexyl diphenyl phosphate (EHDPP), bisphenol-A bis (diphenyl phosphate) (BDP), tris (2-chloroethyl) phosphate (TCEP) and tris (1-chloro-2-propyl) phosphate (TCPP) could also be degraded by ZY1 and the aryl-phosphates was easier to be degraded. The TCPs reduction observed in freshwater and seawater indicated that high salinity might weak the degradability of ZY1.

View Article and Find Full Text PDF

Organophosphate flame retardants (OPFRs) are emerging environmental pollutants that are increasingly being used in consumer commodities. The adverse effects on biota induced by tris(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPHP) have become a growing concern. Unfortunately, toxic mechanisms at the molecular level for OPFRs in organisms are still lacking.

View Article and Find Full Text PDF

The objective of this work was to study the impact of large petrochemical plants and mining operations on the accumulation of heavy metals in farmland and rice, as well as assess their potential risks on human health. The contents of seven heavy metals, Cd, Pb, Cr, Ni, Co, Cu, and Mn, were monitored in a typical polluted paddy soil-rice system near a petrochemical plant and mining area in Maoming, China. The results showed that the content of Cd in the soil exceeds the standard rate by 100%, and the single factor pollution index of Cd was 5.

View Article and Find Full Text PDF

Soil pollution, caused by heavy metals, is an environmental problem that requires an urgent solution in China. Chemical passivation is a technology that uses various passivators to reduce the availability of heavy metals in soil and realize the remediation of contaminated soil. In this study, we examined the effects of fly ash (FA), alkali-fused fly ash (AFFA), swine manure biochar (SB), and modifying biochar (MB) on the leachability of Cu, Zn, Pb, and Cd via soil culture experiments.

View Article and Find Full Text PDF

A strategy involving biochar (BC) hybrid modification was developed to promote the bioremediation effect of degrading bacteria immobilized in layer-by-layer assembly (LBL) microcapsules for the treatment of phenanthrene (PHE) polluted soil. A taxonomic and functional metagenomic approach was used to investigate changes in the microbial community structures and functional gene compositions in the PHE-polluted soil during the bioremediation process. Biofortification with an initial PHE concentration of 100 mg kg dry soil in soils using the BC (3%) hybrid LBL bio-microcapsule (BC-LBL, 2.

View Article and Find Full Text PDF

In this study, a taxonomic and functional metagenomic method was used to investigate the difference produced between degrading bacteria immobilized in layer-by-layer assembly (LBL) microcapsules or not during the bioremediation of a soil polluted with phenanthrene (PHE). Bioaugmentation with LBL microcapsule immobilized degrading bacteria could result in different changes of native microbial communities, shifting the functional gene constructions of polluted soils. The LBL treatment enhanced PHE degradation (initial concentration of 100 mg kg dry soil) by 60% after 25 d compared to the free bacteria (FB).

View Article and Find Full Text PDF

Considering the high environmental risk, the remediation of veterinary drug pollutants aroused numerous concerning. In this paper, a novel photocatlyst, SnO/SnInS, was fabricated by in situ precipitation and hydrothermal method and then employed to simulate photocatalytic degradation of olaquindox under visible light. The SEM, TEM, XRD, XPS and electrochemical results clearly showed that the n-type heterojunction between SnO and SnInS was successfully constructed, which greatly reduce the recombination of the photogenic electron and holes, leading to the improvement of photocalytic performance and stability (recycled over 10 times).

View Article and Find Full Text PDF
Article Synopsis
  • The study examined contamination and distribution of four pyrethroids in agricultural soils of the Yangtze River Delta, China, finding a high detection rate (88.8%) across 241 samples, with the highest mean concentration of fenpropathrin.
  • Spatial analysis revealed elevated levels of pyrethroids around Taihu Lake, likely due to pesticide use and wastewater irrigation in agriculture.
  • Although potential ecological risks were assessed as low, certain pyrethroids could be toxic at a small percentage of sampling sites, prompting further investigation into the human health implications and soil quality.
View Article and Find Full Text PDF

Two types of silica-composited biochars were prepared by mixing swine manure or rice straw with alkali-fused fly ash (AFFA) followed by pyrolysis. A 10% (w/w) AFFA modification improved the specific surface area, pore volume, and average pore size of the biochars. Certain surface oxygen-containing functional groups (i.

View Article and Find Full Text PDF

In acid mine drainage (AMD) polluted rivers, considerable fraction of potential toxic elements are temporarily sequestered by sediments. There are two main potential environmental hazards associated with the sediments, acidity liberation and re-mobilization of metallic elements, during environmental conditions change. The effects of AMD standstill and water dilution on metallic elements migration were assessed in an AMD standstill test and a dialysis experiment.

View Article and Find Full Text PDF

A national-scale survey was conducted to assess the levels and distribution of two extensively used pesticides (pyrethroids and atrazine) in greenhouse and open-field soils in 20 provinces across China. Concentrations between 1.30 and 113 ng/g and 0.

View Article and Find Full Text PDF

The mechanism of improving pyrene (PYR)-degrading ability of bacteria CP13 in Layer-by-layer (LBL) assembly chitosan/alginate (CHI/ALG) bio-microcapsules was investigated. Flow cytometry analysis showed that LBL microcapsules could effectively slow down the increasing rate of bacterial cell membrane permeability and the decreasing rate of the membrane potential, so as to reduce the death rate and number of the cells, which could protect the degrading bacteria. The results of Fluorescence spectrum, circular dichroism (CD) spectrum and laser light scattering (LLS) analysis revealed that the other possible mechanism for LBL microcapsules to promote bacterial degradation were following: CHI could enter the secondary structure of the protein of the extracellular polymeric substances (EPS) from CP13 and combined with EPS to generate a stable ground material, which had larger molecular weight (3.

View Article and Find Full Text PDF

Biotechnology is considered as a promising technology for the removal of polycyclic aromatic hydrocarbons from the environment. Free bacteria are often sensitive to some biotic and abiotic factors in the environment to the extent that their ability to effect biodegradation of organic pollutants, such as polycyclic aromatic hydrocarbons, is hampered. Consequently, it is imperative to carry out investigations into biological systems that will obviate or aid tolerance of bacteria to harsh environmental conditions.

View Article and Find Full Text PDF

The agricultural soil contaminated by polycyclic aromatic hydrocarbons (PAHs) is gradually emerging and becoming serious in China with the rapid development of economy. To reduce the risk of PAHs in agricultural soil and guarantee the food safety, the biological agent that Mycobacterium gilvum immobilized on modified peanut shell powder enhanced remediation of polycyclic aromatic hydrocarbon-contaminated vegetable farmland was investigated under the conditions of the field experiment. The results indicated that adding biological agent could promote PAH degradation in the soil, especially high-ring PAHs.

View Article and Find Full Text PDF

Background, Aim And Scope: Pollutants always co-exist in the environment. Determining and characterizing the interaction among chemicals is an important issue. Experimental designs (ED) play an important role in evaluating the interactions.

View Article and Find Full Text PDF