We report the mechanism of the iron-catalyzed oxidative α-amination of ketones with sulfonamides. Using linear free energy relationships, competition experiments, and identification of reaction intermediates, we have found that the mechanism of this reaction proceeds through rate-limiting electron transfer to 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) from an iron enolate in the process of forming an α-DDQ adduct. The adduct then serves as the electrophile for substitution with sulfonamide nucleophiles, accelerated by iron and additional DDQ.
View Article and Find Full Text PDFWe report the iron-catalyzed α-amination of ketones with sulfonamides. Using an oxidative coupling approach, ketones can be directly coupled with free sulfonamides, without the need for prefunctionalization of either substrate. Primary and secondary sulfonamides are both competent coupling partners, with yields from 55% to 88% for deoxybenzoin-derived substrates.
View Article and Find Full Text PDF