Publications by authors named "Fuan Yan"

Herein, inspired by desert beetles, we fabricated a multifunctional heterogeneous superwettable coating (MHSC) for water collection and oily wastewater cleanup. The selective modifications of 1-octadecanethiol (ODT) treated CoO and P25 TiO nanoparticles (NPs) were prepared, so hydrophobic CoO NPs and superhydrophilic P25 NPs were combined on the MHSC, showing the water contact angle (WCA) of 156.5° and rolling-off angle (RA) of 6.

View Article and Find Full Text PDF

In this study, the influences of different pH values on the corrosion and passivation behaviors of a Q235 carbon steel in HNO-NaNO, HAc-NaNO and HCl-NaNO solutions were studied by electrochemical methods. The manifestations of the electrochemical characteristics were revealed and the variations in the electrochemical parameters were clarified. Moreover, for the Q235 steel in the three solutions with different pH values, the decrease in the corrosion current density ( ) and the increase in the charge transfer resistance ( ) in each solution, indicated a decrease in the corrosion rate.

View Article and Find Full Text PDF

Herein, for four steels (L80, N80, X65 and Q235) in acidic solutions (HNO, HCl, HAc and CO) containing NO , the relationship between the activation-passivation (A-P) transition and the grain boundary dissolution (GBD) was studied by potentiodynamic polarization curve (PPC) measurements and scanning electron microscopy (SEM) observations. In the specific pH range of acidic solutions, where the four steels showed an electrochemical characteristic of the A-P transition, GBD was observed on the steel surface; however, at low or high pH values of the acidic solutions, the four steels respectively showed the electrochemical behavior of activation (A) or self-passivation (sP), and GBD was not observed on the steel surface. The effects of the acid type, pH value and steel type on the electrochemical characteristic of the A-P transition and the occurrence of GBD were also discussed in detail.

View Article and Find Full Text PDF