Publications by authors named "Fuad Rahman"

Background: Clinical Language Models (CLMs) possess the potential to reform traditional healthcare systems by aiding in clinical decision making and optimal resource utilization. They can enhance patient outcomes and help healthcare management through predictive clinical tasks. However, their real-world deployment is limited due to high computational cost at inference, in terms of both time and space complexity.

View Article and Find Full Text PDF

Deep learning techniques have recently demonstrated remarkable success in numerous domains. Typically, the success of these deep learning models is measured in terms of performance metrics such as accuracy and mean average precision (mAP). Generally, a model's high performance is highly valued, but it frequently comes at the expense of substantial energy costs and carbon footprint emissions during the model building step.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic has revealed deep gaps in our understanding of the clinical nuances of this extremely infectious viral pathogen. In order for public health, care delivery systems, clinicians, and other stakeholders to be better prepared for the next wave of SARS-CoV-2 infections, which, at this point, seems inevitable, we need to better understand this disease-not only from a clinical diagnosis and treatment perspective-but also from a forecasting, planning, and advanced preparedness point of view. To predict the onset and outcomes of a next wave, we first need to understand the pathologic mechanisms and features of COVID-19 from the point of view of the intricacies of clinical presentation, to the nuances of response to therapy.

View Article and Find Full Text PDF