IEEE J Biomed Health Inform
March 2024
Brain functional connectivity (FC) networks inferred from functional magnetic resonance imaging (fMRI) have shown altered or aberrant brain functional connectome in various neuropsychiatric disorders. Recent application of deep neural networks to connectome-based classification mostly relies on traditional convolutional neural networks (CNNs) using input FCs on a regular Euclidean grid to learn spatial maps of brain networks neglecting the topological information of the brain networks, leading to potentially sub-optimal performance in brain disorder identification. We propose a novel graph deep learning framework that leverages non-Euclidean information inherent in the graph structure for classifying brain networks in major depressive disorder (MDD).
View Article and Find Full Text PDFWe consider the challenges in extracting stimulus-related neural dynamics from other intrinsic processes and noise in naturalistic functional magnetic resonance imaging (fMRI). Most studies rely on inter-subject correlations (ISC) of low-level regional activity and neglect varying responses in individuals. We propose a novel, data-driven approach based on low-rank plus sparse ( [Formula: see text]) decomposition to isolate stimulus-driven dynamic changes in brain functional connectivity (FC) from the background noise, by exploiting shared network structure among subjects receiving the same naturalistic stimuli.
View Article and Find Full Text PDFComput Intell Neurosci
November 2021
Recognizing vehicle plate numbers is a key step towards implementing the legislation on traffic and reducing the number of daily traffic accidents. Although machine learning has advanced considerably, the recognition of license plates remains an obstacle, particularly in countries whose plate numbers are written in different languages or blended with Latin alphabets. This paper introduces a recognition system for Arabic and Latin alphabet license plates using a deep-learning-based approach in conjugation with data collected from two specific countries: Iraq and Malaysia.
View Article and Find Full Text PDFThe purpose is to estimate the effectiveness of electrocardiograms during resting and active participation by the differentiation between the electrical activity of the heart while standing and sitting in a resting state. The concern is to identify the electrocardiogram parameters that did not show significant changes within these positions. The electrocardiogram parameters can be considered to be a standard marker for medically compromised patients.
View Article and Find Full Text PDFObjective: We exploit altered patterns in brain functional connectivity as features for automatic discriminative analysis of neuropsychiatric patients. Deep learning methods have been introduced to functional network classification only very recently for fMRI, and the proposed architectures essentially focused on a single type of connectivity measure.
Methods: We propose a deep convolutional neural network (CNN) framework for classification of electroencephalogram (EEG)-derived brain connectome in schizophrenia (SZ).
IEEE J Biomed Health Inform
March 2020
Objective: We consider challenges in accurate segmentation of heart sound signals recorded under noisy clinical environments for subsequent classification of pathological events. Existing state-of-the-art solutions to heart sound segmentation use probabilistic models such as hidden Markov models (HMMs), which, however, are limited by its observation independence assumption and rely on pre-extraction of noise-robust features.
Methods: We propose a Markov-switching autoregressive (MSAR) process to model the raw heart sound signals directly, which allows efficient segmentation of the cyclical heart sound states according to the distinct dependence structure in each state.