Publications by authors named "FuJung Chang"

Most active DNA replication origins are found within euchromatin, while origins within heterochromatin are often inactive or inhibited. In yeast, origin activity within heterochromatin is negatively controlled by the histone H4K16 deacetylase, Sir2, and at some heterochromatic loci also by the nucleosome binding protein, Sir3. The prevailing view has been that direct functions of Sir2 and Sir3 are confined to heterochromatin.

View Article and Find Full Text PDF

To initiate DNA replication, cells first load an MCM helicase double hexamer at origins in a reaction requiring ORC, Cdc6, and Cdt1, also called pre-replicative complex (pre-RC) assembly. The essential mechanistic role of Cdc6 ATP hydrolysis in this reaction is still incompletely understood. Here, we show that although Cdc6 ATP hydrolysis is essential to initiate DNA replication, it is not essential for MCM loading.

View Article and Find Full Text PDF

Initiation of eukaryotic DNA replication requires phosphorylation of the MCM complex by Dbf4-dependent kinase (DDK), composed of Cdc7 kinase and its activator, Dbf4. We report here that budding yeast Rif1 (Rap1-interacting factor 1) controls DNA replication genome-wide and describe how Rif1 opposes DDK function by directing Protein Phosphatase 1 (PP1)-mediated dephosphorylation of the MCM complex. Deleting RIF1 partially compensates for the limited DDK activity in a cdc7-1 mutant strain by allowing increased, premature phosphorylation of Mcm4.

View Article and Find Full Text PDF

In budding yeast, the eukaryotic initiator protein ORC (origin recognition complex) binds to a bipartite sequence consisting of an 11 bp ACS element and an adjacent B1 element. However, the genome contains many more matches to this consensus than actually bind ORC or function as origins in vivo. Although ORC-dependent loading of the replicative MCM helicase at origins is enhanced by a distal B2 element, less is known about this element.

View Article and Find Full Text PDF

Saccharomyces cerevisiae chromosome III encodes 11 autonomously replicating sequence (ARS) elements that function as chromosomal replicators. The essential 11-bp ARS consensus sequence (ACS) that binds the origin recognition complex (ORC) has been experimentally defined for most of these replicators but not for ARS318 (HMR-I), which is one of the HMR silencers. In this study, we performed a comprehensive linker scan analysis of ARS318.

View Article and Find Full Text PDF

During G1 phase, a prereplicative complex (pre-RC) that determines where DNA synthesis initiates forms at origins. The Sir2p histone deacetylase inhibits pre-RC assembly at a subset of origins, suggesting that Sir2p inhibits DNA replication through a unique aspect of origin structure. Here, we identified five SIR2-sensitive origins on chromosomes III and VI.

View Article and Find Full Text PDF

The mechanism of desensitization of the nitric oxide (NO) receptor (alpha1.beta1 isoform of soluble guanylyl cyclase, sGC) is not known. Models of the structure of alpha1.

View Article and Find Full Text PDF

Nitric oxide (NO) remains the only firmly established endogenous modulator of soluble guanylyl cyclase (sGC) activity, but physiological, structural, and biochemical evidence now suggests that in vivo regulation of sGC involves direct interaction with other factors. We searched for such endogenous modulators in human umbilical vein endothelial cells and COS-7 cells. The cytosolic fraction of both cell types stimulated the activity of semipurified sGC severalfold in the absence or presence of a saturating concentration of NO.

View Article and Find Full Text PDF

Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme formed by an alpha subunit and a beta subunit, the latter containing the heme where nitric oxide (NO) binds. When NO binds, the basal activity of sGC is increased several hundred fold. sGC activity is also increased by YC-1, a benzylindazole allosteric activator.

View Article and Find Full Text PDF