Although many surgical and nonsurgical therapeutic options have been well-established, hepatocellular carcinoma (HCC) remains the third most common cause of cancer-related death worldwide. Therefore, the discovery of novel potential therapeutic strategies is still urgently required for improving survival and prognosis of HCC patients. As the most potent antigen-presenting cells in the human immune system, dendritic cells (DCs) play an important role in activating not only innate but also adaptive immune responses to specifically destroy tumor cells.
View Article and Find Full Text PDFBackground And Aim: Hepatocellular carcinoma (HCC) remains a serious cause of cancer-related deaths worldwide. Developing new therapeutic strategies is urgently needed to improve the outcomes of HCC patients. Dendritic cell (DC)-based vaccines and programmed death 1 (PD-1) immune checkpoint inhibitors have been regarded as potential immunotherapeutics for HCC.
View Article and Find Full Text PDFBackground: Hepatocellular carcinoma (HCC) is among the most common and lethal human cancers worldwide. Despite remarkable advances in treatment, high mortality in HCC patients remains a big challenge. To develop novel therapeutic strategies for HCC is thus urgently needed to improve patient survival.
View Article and Find Full Text PDFIn this study, for the first time, we precisely assembled the poly-γ-benzyl-l-glutamate and an amphiphilic copolymer d-α-tocopherol polyethylene glycol succinate into a mixed micellar system for the embedment of the anticancer drug doxorubicin. Importantly, the intracellular drug-releasing behaviors could be controlled by changing the secondary structures of poly-γ-benzyl-l-glutamate via the precise regulation of the buffer's pH value. Under neutral conditions, the micellar architectures were stabilized by both α-helix secondary structures and the microcrystalline structures.
View Article and Find Full Text PDFCurcumin has been proven to be a potent agent in colon cancer treatment. However, its hydrophobicity and low oral bioavailability hampered its clinical application. These limitations could be improved through appropriate formulations such as using polyelectrolyte complexes (PECs).
View Article and Find Full Text PDF