Background/purpose: A swine-origin influenza A/H1N1 virus (termed A/H1N1pdm) caused a pandemic in 2009 and has continuously circulated in the human population. To investigate its possible ecological effects on circulating influenza strains, the seasonal patterns of influenza viruses and the respective age distribution of infected patients were studies.
Methods: The data obtained from national influenza surveillance systems in Taiwan from July 2009 to June 2018 were analyzed.
Seasonal influenza viruses impact public health annually due to their continual evolution. However, the current inactivated seasonal vaccines provide poor protection against antigenically drifted viruses and require periodical reformulation through hit-and-miss predictions about which strains will circulate during the next season. To reduce the impact caused by vaccine mismatch, we investigated the drift-tolerance of virus-like particles (VLP) as an improved vaccine candidate.
View Article and Find Full Text PDFNew variants of the influenza A(H1N1)pdm09 and A(H3N2) viruses were detected in Taiwan between 2012 and 2013. Some of these variants were not detected in clinical specimens using a common real-time reverse transcription-PCR (RT-PCR) assay that targeted the conserved regions of the viral matrix (M) genes. An analysis of the M gene sequences of the new variants revealed that several newly emerging mutations were located in the regions where the primers or probes of the real-time RT-PCR assay bind; these included three mutations (G225A, T228C, and G238A) in the A(H1N1)pdm09 virus, as well as one mutation (C163T) in the A(H3N2) virus.
View Article and Find Full Text PDFThe annual recurrence of the influenza epidemic is considered to be primarily associated with immune escape due to changes to the virus. In 2011-2012, the influenza B epidemic in Taiwan was unusually large, and influenza B was predominant for a long time. To investigate the genetic dynamics of influenza B viruses during the 2011-2012 epidemic, we analyzed the sequences of 4,386 influenza B viruses collected in Taiwan from 2004 to 2012.
View Article and Find Full Text PDFCancer Immunol Immunother
November 2012
Cervical cancer is caused primarily by infection with oncogenic types of human papillomavirus (HPV). However, HPV infection alone is not sufficient for the progression to cervical cancer. Host immunogenetic factors may involve in the development of this disease.
View Article and Find Full Text PDF