Skeletal editing has received unprecedented attention as an emerging technology for the late-stage manipulation of molecular scaffolds. The direct achievement of functionalized carbon-atom insertion in aromatic rings is challenging. Despite ring-expanding carbon-atom insertion reactions, such as the Ciamician-Dennstedt re-arrangement, being performed for more than 140 years, only a few relevant examples of such transformations have been reported, with these limited to the installation of halogen, ester and phenyl groups.
View Article and Find Full Text PDFThe targeted and selective replacement of a single atom in an aromatic system represents a powerful strategy for the rapid interconversion of molecular scaffolds. Herein, we report a pyridine-to-benzene transformation nitrogen-to-carbon skeletal editing. This approach proceeds a sequence of pyridine ring-opening, imine hydrolysis, olefination, electrocyclization, and aromatization to achieve the desired transmutation.
View Article and Find Full Text PDFAn unprecedented but challenging defluorinative arylboration has been achieved. Enabled by a copper catalyst, an interesting procedure on defluorinative arylboration of styrenes has been established. With polyfluoroarenes as the substrates, this methodology offers flexible and facile access to provide a diverse assortment of products under mild reaction conditions.
View Article and Find Full Text PDFBackground: Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Abnormal activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome plays a vital role in the pathogenesis of sepsis. Matrine is proved to show good anti-inflammatory properties, whereas its effect and the underlying molecular machinery on sepsis remains unclear.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2022
Boroaminomethylation of olefins is an efficient process to convert hydrocarbons directly into boron-, nitrogen-containing molecules. Such chemicals are a good handle for obtaining more complexed amine derivatives through the various transformations of organoboron. However, using simple and easily available CO as the C1 feedstock to achieve boroaminomethylation is still elusive.
View Article and Find Full Text PDFRegioselective catalytic multi-functionalization reactions enable the rapid synthesis of complexed products from the same precursors. In this communication, we present a method for the regiodivergent borocarbonylation of benzylidenecyclopropanes with aryl iodides. Various γ-vinylboryl ketones and β-cyclopropylboryl ketones were produced in moderate to good yields with excellent regioselectivity from the same substrates.
View Article and Find Full Text PDFThe construction of structurally complexed and high-value chemical molecules from simple and readily available feedstocks is a long-standing challenge to chemists. Here, we describe a copper-catalyzed borofunctionalization of styrenes with Bpin and carbon monoxide. A set of new sodium cyclic borates were obtained with NaO Bu as the base.
View Article and Find Full Text PDFA novel copper-catalyzed carbonylative trifluoromethylation of unactivated alkenes has been developed. A broad range of β-trifluoromethylated carboxylic acid derivatives were prepared in moderate to excellent yields from simple alkenes with excellent regioselectivity. It is noteworthy that ethylene gas, as the simplest olefin, can also be applied directly to obtain β-trifluoromethylated amides and ester.
View Article and Find Full Text PDFThe addition reaction between CuBpin and alkenes to give a terminal boron substituted intermediate is usually fast and facile. In this communication, a selectivity-reversed procedure has been designed and established. This selectivity-reversed borocarbonylation reaction is enabled by a cooperative action between palladium and copper catalysts and proceeds with complete regioselectivity.
View Article and Find Full Text PDFCuH and CuBpin are versatile catalysts and intermediates in organic chemistry. However, studies that involve both CuH and CuBpin in the same reaction is still rarely reported due to their high reactivity. Now, a study on CuH- and CuBpin-catalyzed borylative methylation of alkyl iodides with CO as the C1 source is reported.
View Article and Find Full Text PDFAn unprecedented and challenging defluorinative carbonylation was achieved. Enabled by a Pd/Cu cooperative catalyst system, the first example of defluorinative carbonylative coupling has been established. With gem-difluoroalkenes and aryl iodides as the substrates, this methodology offers flexible and facile access to privileged α-fluorochalcones under mild reaction conditions in moderate-to-excellent yields.
View Article and Find Full Text PDFRegioselective transformation is among the long-standing challenges in organic synthesis. In this communication, a copper-catalyzed selectivity controlled regiodivergent borocarbonylation of imines with alkyl iodides has been developed. Various α-amino ketones and α-boryl amides were produced in moderate to good yields from the same substrates.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2020
Amides are one of the most ubiquitous functional groups in synthetic and medicinal chemistry. Novel and rapid synthesis of amides remains in high demand. In this communication, a general and efficient procedure for branch-selective hydroamidation of vinylarenes with hydroxyamine derivatives enabled by copper catalysis has been developed for the first time.
View Article and Find Full Text PDFA novel copper-catalyzed stereodefined procedure for the selective synthesis of cyclopropyl bis(boronates) from terminal alkenes has been developed. Various aliphatic alkenes were transformed into the desired bis(boronate ester)-substituted cyclopropanes in moderate to good yields. Synthetic transformations of the resulting cyclopropyl bis(boronates) demonstrate their utility.
View Article and Find Full Text PDFWe report here a general four-component synthetic procedure for the preparation of β-boryl ketones and β-boryl vinyl esters. Joint catalyzed by palladium and copper catalysts, borocarbonylative reaction between vinylarenes, aryl halides/triflates, B Pin , and carbon monoxide proceed successfully. A variety of synthetically useful β-boryl ketones were synthesized in good to high yields by using aryl iodides as the substrates.
View Article and Find Full Text PDFThe borocarbonylative coupling of unactivated alkenes with alkyl halides remains a challenge. In this communication, a Cu-catalyzed borocarbonylative coupling of unactivated alkenes with alkyl halides for the synthesis of β-boryl ketones has been developed. A broad range of β-boryl ketone derivatives was prepared in moderate to excellent yields with complete regioselectivity.
View Article and Find Full Text PDFIn this Communication, procedures for the selective synthesis of 4-arylbutanoic acids, 2-arylbutanoic acids, and 4-arylbutanals from the same allylbenzenes have been developed. With formic acid or TFBen as the CO surrogate, reactions proceed selectively and effectively under carbon monoxide gas-free conditions.
View Article and Find Full Text PDFA palladium-catalyzed four-component carbonylative coupling reaction involving aryl halides, internal alkynes, arylboronic acids, and CO has been developed for the first time. All-carbon substituted α-unsaturated ketones and benzofulvenes can be selectively obtained in a highly regio- and stereocontrolled manner. Using Cu(TFA) as the additive, a series of tetrasubstituted α-unsaturated ketones were prepared in moderate to high yields.
View Article and Find Full Text PDFA novel deep-blue fluorescent emitter was designed and synthesized. The external quantum efficiency (η) of the blue-emitting, doped, organic light-emitting diode (OLED) was as high as 4.34%.
View Article and Find Full Text PDFFunctionalized alkyl iodides are important compounds in organic chemistry and biology. In this communication, we developed an interesting nickel-catalyzed carbonylative synthesis of functionalized alkyl iodides from aryl iodides and ethers. With Mo(CO) as the solid CO source, both cyclic and acyclic ethers were activated, which is also a challenging topic in organic synthesis.
View Article and Find Full Text PDFThe paucity of near-infrared (NIR) organic materials with high absorption at long wavelengths, combined with large diffusion lengths and charge mobilities, is an impediment to progress in achieving high-efficiency organic tandem solar cells. Here a subcell is employed within a series tandem stack that comprises a solution-processed ternary blend of two NIR-absorbing nonfullerene acceptors and a polymer donor combined with a small-molecular-weight, short-wavelength fullerene-based subcell grown by vacuum thermal evaporation. The ternary cell achieves a power conversion efficiency of 12.
View Article and Find Full Text PDFA nickel-catalyzed molybdenum-promoted carbonylative coupling reaction for the synthesis of benzophenones from aryl iodides has been developed. Various substituted diaryl ketones were synthesized in moderate to excellent yields under CO-gas-free conditions. A synergetic effect of both nickel and molybdenum has been observed, which is also responsible for the success of this transformation.
View Article and Find Full Text PDFThe main contributions in the field of first-row transition-metal-catalyzed (base-metal-catalyzed) carbonylative transformations have been summarized and discussed. The contents have been divided according to the electrophiles applied, followed by the different types of nucleophiles. Their reaction mechanisms and applications have been emphatically discussed.
View Article and Find Full Text PDFA direct, palladium-catalyzed, carbonylative transformation of allylic alcohols for the synthesis of β,γ-unsaturated carboxylic acids has been developed. With formic acid as the CO source, various allylic alcohols were conveniently transformed into the corresponding β,γ-unsaturated carboxylic acids with excellent linear and (E)-selectivity. The reaction was performed under mild conditions; toxic CO gas manipulation and high-pressure equipment were avoided in this procedure.
View Article and Find Full Text PDFA new electron-deficient unit with a fused 5-membered heterocyclic ring was developed by replacing a cyclopenta-1,3-diene from electron-rich donor indacenodithiophene (IDT) with a cyclohepta-4,6-diene-1,3-diimde unit. The imide bridge endows dithienylbenzenebisimide (BBI) with a fixed planar configuration and low energy levels for both the highest occupied molecular orbital (HOMO; -6.24 eV) and the lowest unoccupied molecular orbit (LUMO; -2.
View Article and Find Full Text PDF