The molecular mechanisms of signal transduction of plants in response to Verticillium dahliae (VD) are not known. Here, we show that Arabidopsis reacts to VD-toxins with a rapid burst of nitric oxide (NO) and cortical microtubule destabilization. VD-toxins treatment triggered a disruption of cortical microtubules network.
View Article and Find Full Text PDFThe source of nitric oxide (NO) in plants is unclear and it has been reported NO can be produced by nitric oxide synthase (NOS) like enzymes and by nitrate reductase (NR). Here we used wild-type, Atnos1 mutant and nia1, nia2 NR-deficient mutant plants of Arabidopsis thaliana to investigate the potential source of NO production in response to Verticillium dahliae toxins (VD-toxins). The results revealed that NO production is much higher in wild-type and Atnos1 mutant than in nia1, nia2 NR-deficient mutants.
View Article and Find Full Text PDF