Long-lasting and highly efficient antibacterial fabrics play a key role in public health occurrences caused by bacterial and viral infections. However, the production of antibacterial fabrics with a large size, highly efficient, and broad-spectrum antibacterial performance remains a great challenge due to the complex processes. Herein, we demonstrate sizable and highly efficient antibacterial fabrics through hydrogen bonding interaction and electrostatic interaction between surface groups of ZnO nanoparticles and fabric fibers.
View Article and Find Full Text PDFThe issues of fruit waste and safety resulting from rot have spurred a demand for improved packaging systems. Herein, we present highly antibacterial and antioxidative carbon nanodot/silk fibroin (CD/SF) films for fruit preservation. The films are composed of CDs and SF together with a small amount of glycerol via hydrogen bonding, exhibiting outstanding biosafety, transparency, and stretchability.
View Article and Find Full Text PDFThe increase in antibiotic resistance promotes the situation of developing new antibiotics at the forefront, while the development of non-antibiotic pharmaceuticals is equally significant. In the post-antibiotic era, nanomaterials with high antibacterial efficiency and no drug resistance make them attractive candidates for antibacterial materials. Carbon dots (CDs), as a kind of carbon-based zero-dimensional nanomaterial, are attracting much attention for their multifunctional properties.
View Article and Find Full Text PDF